Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(11): 5240-5254, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270024

RESUMO

Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Escherichia coli , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Antibacterianos/farmacologia , Hidrogênio
2.
Food Sci Nutr ; 5(6): 1163-1169, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29188044

RESUMO

Fortification of custard powder (CP) with protein from cheap sources such as soybean could potentially improve its nutritive value but may alter its functional and sensory properties. This study was therefore conducted to determine the effect of soy protein isolate (SPI) inclusion (0%-20%) on some functional and sensory properties of cassava starch-based CP. Functional, pasting, and sensory acceptability were determined using standard methods. Increase in soy protein isolate significantly (p < .05) decreased dispersibility, packed bulk density, swelling power, peak, trough, breakdown, final, and setback viscosities, but increased least gelation concentration, water absorption capacity, and solubility index. This study further showed that despite increasing addition of SPI up to 20%, sensory acceptability of the cassava starch-based CP formulations did not differ significantly, and most of them had very similar acceptability when compared to that of corn starch-based CP.

3.
J Biol Inorg Chem ; 22(1): 1-18, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27904956

RESUMO

Metal coordination of bioorganic compounds from both natural and synthetic products is not only gaining recognition in drug design and medicinal inorganic chemistry research, also they are being considered in the improvement of the bioactivity of drugs. What is done in this paper is a review of recent advances in the study of coordination-driven drug delivery, i.e., metal-based drugs (MBDs). The role of some late first row transition metal ions namely Fe, Cu and Zn in the biological activities of metallodrugs such as antimalarials and antimicrobials are highlighted. It was revealed that the interaction between these bio-essential transition metal ions and the organic drugs could enhance the diagnostic and therapeutic potentials of such formed drugs. This is because such interactions were proved to have improved the stability, bioavailability and cell delivery functions of the metallodrugs. Emphasizing on the challenge of metal ions toxicity, the researchers concluded on the need for the development of MBDs to combat drug resistant parasites without causing injury to normal cells. This would be of significance in addressing the concern World Health Organisation of ameliorating the increasing mortality rate in developing countries.


Assuntos
Doença , Metais/química , Metais/uso terapêutico , Clima Tropical , Animais , Humanos , Metais/farmacologia , Metais/toxicidade
4.
Carbohydr Polym ; 151: 1235-1239, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474675

RESUMO

Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2µg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry.


Assuntos
Ácidos Carboxílicos/química , Quitosana/química , Cianetos/isolamento & purificação , Compostos Organometálicos/química , Águas Residuárias/química , Purificação da Água/métodos , Cianetos/química , Ferro/química , Níquel/química , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
5.
J Environ Sci (China) ; 24(9): 1702-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23520880

RESUMO

Chemical reduction of nitrate using metal nanoparticles has received increasing interest due to over-dependence on groundwater and consequence health hazard of the nitrate ion. One major drawback of this technique is the agglomeration of nanoparticles leading to the formation of large flocs. A low cost biopolymeric material, poly [beta-(1-->4)-2-amino-2-deoxy-D-glucopyranose] (beta-PADG) obtained from deacetylated chitin was used as stabilizer to synthesize zero valent nickel (ZVNi) nanoparticles. The beta-PADG-ZVNi nanocomposite was characterized using infra red (IR), UV-Vis spectrophotometric techniques and Scanning Electron Microscope (SEM). The morphology of the composite showed that beta-PADG stabilized-ZVNi nanoparticles were present as discrete particles. The mean particle size was estimated to be (7.76 +/- 2.98) nm and surface area of 87.10 m2/g. The stabilized-ZVNi nanoparticles exhibited markedly greater reactivity for reduction of nitrate in water with 100% conversion within-2 hr contact owing to less agglomeration. Varying the beta-PADG-to-ZVNi ratio and the ZVNi-to-nitrate molar ratio generally led to a faster nitrate reduction. About 3.4-fold difference in the specific reaction rate constant suggests that the application of the beta-PADG-stabilizer not only increased the specific surface area of the resultant nanoparticles, but also greatly enhanced the surface reactivity of the nanoparticles per unit area.


Assuntos
Glucose/análogos & derivados , Glucose/química , Nanocompostos/química , Níquel/química , Nitratos/química , Poluentes Químicos da Água/química , Nanopartículas , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...