Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(2): 024116, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641391

RESUMO

It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet-triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over "safe" excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet-triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature-the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states.

2.
J Phys Chem Lett ; 13(35): 8312-8318, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040023

RESUMO

The pyronin class of fluorophores serves a critical role in numerous imaging applications, particularly involving preferential staining of RNA through base pair intercalation. Despite this important role in molecular staining applications, the same set of century-old pyronins (i.e., pyronin Y (PY) and pyronin B (PB)), which possess relatively low fluorophore brightness, are still predominantly being used due to the lack of methodology for generating enhanced variants. Here, we use TD-DFT calculations of interconversion energies between structures on the S1 surface as a preliminary means to evaluate fluorophore brightness for a proposed set of pyronins containing variable substitution patterns at the 2, 3, 6, and 7 positions. Using a nucleophilic aromatic substitution/hydride addition approach, we synthesized the same set of pyronins and demonstrate that quantum-mechanical computations are useful for predicting fluorophore performance. We produced the brightest series of pyronin fluorophores described to date, which possess considerable gains over PY and PB.


Assuntos
Pironina , RNA , Corantes Fluorescentes , Estrutura Molecular , Pironina/química , Coloração e Rotulagem
3.
Chemphyschem ; 22(24): 2517-2525, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34519406

RESUMO

Methane over-oxidation by copper-exchanged zeolites prevents realization of high-yield catalytic conversion. However, there has been little description of the mechanism for methane over-oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3 O3 ]2+ active sites can over-oxidize methane. However, the role of [Cu3 O3 ]2+ sites in methane-to-methanol conversion remains under debate. Here, we examine methane over-oxidation by dicopper [Cu2 O]2+ and [Cu2 O2 ]2+ sites using DFT in zeolite mordenite (MOR). For [Cu2 O2 ]2+ , we considered the µ-(η2 :η2 ) peroxo-, and bis(µ-oxo) motifs. These sites were considered in the eight-membered (8MR) ring of MOR. µ-(η2 :η2 ) peroxo sites are unstable relative to the bis(µ-oxo) motif with a small interconversion barrier. Unlike [Cu2 O]2+ which is active for methane C-H activation, [Cu2 O2 ]2+ has a very large methane C-H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over-oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3 group, followed by OH and can proceed near 200 °C. Thus, for [Cu2 O]2+ and [Cu2 O2 ]2+ species, over-oxidation is an inter-site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra-site process for [Cu3 O3 ]2+ sites and the role of Brønsted acid sites.

4.
Inorg Chem ; 60(12): 8489-8499, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34097398

RESUMO

Here, we analyze changes in the optical spectra of activated copper-exchanged zeolites during methane activation with the Tamm-Dancoff time-dependent density functional theory, TDA-DFT, while using the ωB2PLYP functional. Two active sites, [Cu2O]2+ and [Cu3O3]2+, were studied. For [Cu2O]+, the 22 700 cm-1 peak is associated with µ-oxo 2p → Cu 3d/4s charge transfer. Of the [Cu2O]2+ methane C-H activation intermediates that we examined, only [Cu-O(H)(H)-Cu] and [Cu-O(H)(CH3)-Cu] have spectra that match experimental observations. After methane activation, the µ-oxo 2p orbitals lose two electrons and become hybridized with methanol C 2p orbitals and/or H 1s orbitals. The frontier unoccupied orbitals become more Cu 4s/4p Rydberg-like, reducing overlap with occupied orbitals. These effects cause the disappearance of the 22 700 cm-1 peak. For [Cu3O3]2+, the exact structures of the species formed after methane activation are unknown. Thus, we considered eight possible structures. Several of these provide a significant decrease in intensity near 23 000-38 000 cm-1, as seen experimentally. Notably, these species involve either rebound of the separated methyl to a µ-oxo atom or its remote stabilization at a Brønsted acid site in exchange for the acidic proton. These spectral changes are caused by the same mechanism seen in [Cu2O]2+ and are likely responsible for the observed reduced intensities near 23 000-38 000 cm-1. Thus, TDA-DFT calculations with ωB2PLYP provide a molecular-level understanding of the evolution of copper-oxo active sites during methane-to-methanol conversion.

5.
Inorg Chem ; 60(9): 6218-6227, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33876934

RESUMO

There is an ongoing debate regarding the role of [Cu3O3]2+ in methane-to-methanol conversion by copper-exchanged zeolites. Here, we perform electronic structure analysis and localized orbital bonding analysis to probe the redox chemistry of its Cu and µ-oxo sites. Also, the X-ray absorption near-edge structure, XANES, of methane activation in [Cu3O3]2+ is compared to that of the more ubiquitous [Cu2O]2+. Methane C-H activation is associated with only the Cu2+/Cu+ redox couple in [Cu2O]2+. For [Cu3O3]2+, there is no basis for the Cu3+/Cu2+ couple's participation at the density functional theory ground state. In [Cu3O3]2+, there are many possible intrazeolite intermediates for methane activation. In the nine possibilities that we examined, methane activation is driven by a combination of the Cu2+/Cu+ and oxyl/O2- redox couples. Based on this, the Cu 1s-edge XANES spectra of [Cu2O]2+ and [Cu3O3]2+ should both have energy signatures of Cu2+ → Cu+ reduction during methane activation. This is indeed what we obtained from the calculated XANES spectra. [Cu2O]2+ and [Cu3O3]2+ intermediates with one Cu+ site are shifted by 0.9-1.7 eV, while those with two Cu+ sites are shifted by 3.0-4.2 eV. These are near a range of 2.5-3.2 eV observed experimentally after contacting methane with activated copper-exchanged zeolites. Thus, activation of methane by [Cu3O3]2+ will lead to formation of Cu+ sites. Importantly, for future quantitative XANES studies, involvement of O- + e- → O2- in [Cu3O3]2+ implies a disconnect between the overall reactivity and the number of electrons used in the Cu2+/Cu+ redox couple.

6.
Chemphyschem ; 22(11): 1101-1109, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786957

RESUMO

Copper-exchanged zeolites are useful for stepwise conversion of methane to methanol at moderate temperatures. This process also generates some over-oxidation products like CO and CO2 . However, mechanistic pathways for methane over-oxidation by copper-oxo active sites in these zeolites have not been previously described. Adequate understanding of methane over-oxidation is useful for developing systems with higher methanol yields and selectivities. Here, we use density functional theory (DFT) to examine methane over-oxidation by [Cu3 O3 ]2+ active sites in zeolite mordenite MOR. The methyl group formed after activation of a methane C-H bond can be stabilized at a µ-oxo atom of the active site. This µ-(O-CH3 ) intermediate can undergo sequential hydrogen atom abstractions till eventual formation of a copper-monocarbonyl species. Adsorbed formaldehyde, water and formates are also formed during this process. The overall mechanistic path is exothermic, and all intermediate steps are facile at 200 °C. Release of CO from the copper-monocarbonyl costs only 3.4 kcal/mol. Thus, for high methanol selectivities, the methyl group from the first hydrogen atom abstraction step must be stabilized away from copper-oxo active sites. Indeed, it must be quickly trapped at an unreactive site (short diffusion lengths) while avoiding copper-oxo species (large paths between active sites). This stabilization of the methyl group away from the active sites is central to the high methanol selectivities obtained with stepwise methane-to-methanol conversion.

7.
J Chem Phys ; 152(7): 074201, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087671

RESUMO

Cyanamides (NCN) have been shown to have a larger transition dipole strength than cyano-probes. In addition, they have similar structural characteristics and vibrational lifetimes to the azido-group, suggesting their utility as infrared (IR) spectroscopic reporters for structural dynamics in biomolecules. To access the efficacy of NCN as an IR probe to capture the changes in the local environment, several model systems were evaluated via 2D IR spectroscopy. Previous work by Cho [G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, and M. Cho, J. Phys. Chem. B 122(14), 4035-4044 (2018)] showed that phenylalanine analogues containing NCN show strong anharmonic coupling that can complicate the interpretation of structural dynamics. However, when NCN is embedded in 5-membered ring scaffolds, as in N-cyanomaleimide and N-cyanosuccinimide, a unique band structure is observed in the 2D IR spectrum that is not predicted by simple anharmonic frequency calculations. Further investigation indicated that electron delocalization plays a role in the origins of the band structure. In particular, the origin of the lower frequency transitions is likely a result of direct interaction with the solvent.


Assuntos
Cianamida/química , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Estrutura Molecular , Espectrofotometria Infravermelho
8.
Inorg Chem ; 59(5): 3102-3109, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049500

RESUMO

Organometallic uranium complexes that can activate small molecules are well-known. In contrast, there are no known organometallic trans-uranium species capable of small-molecule transformations. Using density functional theory, we previously showed that changing actinide-ligand bonds from U-O groups to Np-N- (amide/imido) bonds makes redox small-molecule activation more energetically favorable for Np species. Here, we determine how general this ligand-modulation strategy is for affecting small-molecule activation in Np species. We focus on two reactions, one involving redox transformation of the actinide(s) and the other involving no change in the oxidation state of the actinide(s). Specifically, we considered the hydrogen evolution reaction (HER) from H2O by actinide tris-aryloxide species. We also considered H2 capture and hydride transfer by actinide siloxide and silylamide complexes. For the HER, the barriers for Np(III) systems are much higher than those of U(III). The overall reaction energies are also much worse. An-O → An-N substitutions marginally improve the barriers by 1-4 kcal/mol and more substantially improve the reaction energies by 9-15 kcal/mol. For H2 capture and hydride transfer, the reaction energies for the U and Np species are similar. For both actinides, like-for-like An-O → An-N substitutions lead to improved reaction energies. Interestingly, in a recent report, it seemingly appears that U-O (siloxide) → U-N (silylamide) leads to complete shutdown of reactivity for H2 capture and hydride transfer. This observation is reproduced and explained with calculations. The ligand environments of the siloxide and silylamide that were compared are vastly different. The steric environment of the siloxide is conducive for reactivity while the particular silylamide is not. We conclude that small-molecule activation with organometallic neptunium species is achievable with a guided choice of ligands. Additional emphasis should be placed on ligands that can allow for improved transition state barriers.

9.
J Chem Phys ; 151(13): 134102, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594337

RESUMO

We have examined the performance of Multiconfiguration Pair-Density Functional Theory (MC-PDFT) for computing the ground-state properties of actinide species. Specifically, we focused on the properties of UN2 and various actinyl species. The properties obtained with MC-PDFT at the scalar-relativistic level are compared to Kohn-Sham DFT (KS-DFT); complete active space self-consistent field theory, CASSCF; coupled-cluster theory, CCSD(T) and CCSDT; as well as multireference perturbation theory (CASPT2). We examine the degree to which MC-PDFT improves over KS-DFT and CASSCF while aligning with CASPT2, CCSD(T), and CCSDT. All properties that we considered were for the CASPT2 electronic ground states. For structural parameters, MC-PDFT confers very little advantage over KS-DFT, especially the B3LYP density functional. For NpO2 3+, MC-PDFT and local KS-DFT functionals excessively favor the bent structure, whereas CCSDT and CASPT2 predict the bent and linear structures as isoenergetic. For this special case, hybrid KS-DFT functionals like PBE0 and B3LYP provide results closer to CASPT2 and CCSDT than MC-PDFT. On a more positive note, MC-PDFT is very close to CASPT2 and CCSD(T) for the redox potentials, energetics of redox chemical reactions, as well as ligand-binding energies. These are encouraging results since MC-PDFT is more affordable. The best MC-PDFT functional is ft-PBE. Our findings suggest that MC-PDFT can be used to study systems and excited states with larger strong electron correlation effects than were considered here. However, for the systems and properties considered here, KS-DFT functionals do well, justifying their usage as the bulwark of computational actinyl chemistry over the last two to three decades.

10.
Inorg Chem ; 58(10): 6731-6741, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31050297

RESUMO

There is recent interest in organometallic complexes of the trans-uranium elements. However, preparation and characterization of such complexes are hampered by radioactivity and chemotoxicity issues as well as the air-sensitive and poorly understood behavior of existing compounds. As such, there are no examples of small-molecule activation via redox reactivity of organometallic trans-uranium complexes. This contrasts with the situation for uranium. Indeed, a multimetallic uranium(III) nitride complex was recently synthesized, characterized, and shown to be able to capture and functionalize molecular nitrogen (N2) through a four-electron reduction process, N2 → N24-. The bis-uranium nitride, U-N-U core of this complex is held in a potassium siloxide framework. Importantly, the N24- product could be further functionalized to yield ammonia (NH3) and other desirable species. Using the U-N-U potassium siloxide complex, K3U-N-U, and its cesium analogue, Cs3U-N-U, as starting points, we use scalar-relativistic and spin-orbit coupled density functional theory calculations to shed light on the energetics and mechanism for N2 capture and functionalization. The N2 → N24- reactivity depends on the redox potentials of the U(III) centers and crucially on the stability of the starting complex with respect to decomposition into the mixed oxidation U(IV)/U(III) K2U-N-U or Cs2U-N-U species. For the trans-uranium, Np and Pu analogues of K3U-N-U, the N2 → N24- process is endoergic and would not occur. Interestingly, modification of the Np-O and Pu-O bonds between the actinide cores and the coordinated siloxide framework to Np-NH, Pu-NH, Np-CH2, and Pu-CH2 bonds drastically improves the reaction free energies. The Np-NH species are stable and can reductively capture and reduce N2 to N24-. This is supported by analysis of the spin densities, molecular structure, long-range dispersion effects, as well as spin-orbit coupling effects. These findings chart a path for achieving small-molecule activation with organometallic neptunium analogues of existing uranium complexes.

11.
J Comput Chem ; 39(32): 2667-2678, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30379335

RESUMO

Methane-to-methanol conversion (MMC) can be facilitated with high methanol selectivities by copper-exchanged zeolites. There are however two open questions regarding the use of these zeolites to facilitate the MMC process. The first concerns the possibility of operating the three cycles in the stepwise MMC process by these zeolites in an isothermal fashion. The second concerns the possibility of improving the methanol yields by systematic substitution of some copper centers in these active sites with other earth-abundant transition metals. Quantum-mechanical computations can be used to compare methane activation by copper oxide species and analogous mixed-metal systems. To carry out such screening, it is important that we use theoretical methods that are accurate and computationally affordable for describing the properties of the hetero-metallic catalytic species. We have examined the performance of 47 exchange-correlation density functionals for predicting the relative spin-state energies and chemical reactivities of six hetero-metallic [M-O-Cu]2+ and [M-O2 -Cu]2+ , (where MCo, Fe, and Ni), species by comparison with coupled cluster theory including iterative single, double excitations as well as perturbative treatment of triple excitations, CCSD(T). We also performed multireference calculations on some of these systems. We considered two types of reactions (hydrogen addition and oxygen addition) that are relevant to MMC. We recommend the use of τ-HCTH and OLYP to determine the spin-state energy splittings in the hetero-metallic motifs. ωB97, ωB97X, ωB97X-D3, and MN15 performed best for predicting the energies of the hydrogen and oxygen addition reactions. In contrast, local, and semilocal functionals do poorly for chemical reactivity. Using [Fe-O-Cu]2+ as a test, we see that the nonlocal functionals perform well for the methane CH activation barrier. In contrast, the semilocal functionals perform rather poorly. © 2018 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...