Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(51): 36468-36476, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38099250

RESUMO

High-entropy alloys (HEAs) have attracted great attention for many biomedical applications. However, the nature of interatomic interactions in this class of complex multicomponent alloys is not fully understood. We report, for the first time, the results of theoretical modeling for porosity in a large biocompatible HEA TiNbTaZrMo using an atomistic supercell of 1024 atoms that provides new insights and understanding. Our results demonstrated the deficiency of using the valence electron count, quantification of large lattice distortion, validation of mechanical properties with available experimental data to reduce Young's modulus. We utilized the novel concepts of the total bond order density (TBOD) and partial bond order density (PBOD) via ab initio quantum mechanical calculations as an effective theoretical means to chart a road map for the rational design of complex multicomponent HEAs for biomedical applications.

2.
Comput Biol Med ; 167: 107576, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871435

RESUMO

The emergence of Omicron SARS-CoV-2 subvariants (BA.1, BA.2, BA.4, and BA.5), with an unprecedented number of mutations in their receptor-binding domain (RBD) of the spike-protein, has fueled a resurgence of COVID-19 infections, posing a major challenge to the efficacy of existing vaccines and monoclonal antibody (mAb) therapeutics. We conducted a systematic molecular dynamics (MD) simulation to investigate how the RBD mutations of these subvariants affect the interactions with broad mAbs including AstraZeneca (COV2-2196 and COV2-2130), Brii Biosciences (BRII-196), Celltrion (CT-P59), Eli Lilly (LY-CoV555 and LY-CoV016), Regeneron (REGN10933 and REGN10987), Vir Biotechnology (S309), and S2X259. Our results show a complete loss of binding for COV2-2196, BRII-196, CT-P59, and LY-CoV555 with all Omicron RBDs. Additionally, REGN10987 totally loses its binding with BA.1, but retains a partial binding with BA.2 and BA.4/5. The binding reduction is significant for LY-CoV016 and REGN10933 but moderate for COV2-2130. S309 and S2X259 retain their binding with BA.1 but exhibit decreased binding with other subvariants. We introduce a mutational escape map for each mAb to identify the key RBD sites and the corresponding critical mutations. Overall, our findings suggest that the majority of therapeutic mAbs have diminished or missing activity against Omicron subvariants, indicating the urgent need for a new therapeutic mAb with a better design.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Mutação , COVID-19/genética
3.
Sci Rep ; 13(1): 16218, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758746

RESUMO

GeTe-based and PbSe-based high-entropy compounds have outstanding thermoelectric (TE) performance and crucial applications in mid and high temperatures. Recently, the optimization of TE performance of high-entropy compounds has been focused on reducing thermal conductivity by strengthening the phonon scattering process to improve TE performance. We report a first-principles investigation on nine GeTe-based high-entropy chalcogenide solid solutions constituted of eight metallic elements (Ag, Pb, Sb, Bi, Cu, Cd, Mn, and Sn) and 13 PbSe-based high-entropy chalcogenide solid solutions: Pb0.99-ySb0.012SnySe1-2xTexSx (x = 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and y = 0) and Pb0.99-ySb0.012SnySe1-2xTexSx (y = 0.05, 0.1, 0.15, 0.2, 0.25 and x = 0.25). We have investigated the mechanical properties focusing on Debye temperature (ΘD), thermal conductivity (κ), Grüneisen parameter (γα), dominant phonon wavelength (λdom), and melting temperature (Tm). We find that the lattice thermal conductivity is significantly reduced when GeTe is alloyed into the following compositions: Ge0.75Sb0.13Pb0.12Te, Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te, and Ge0.61Ag0.11Sb0.13Pb0.12Mn0.05Bi0.01Te. This reduction is due to the mass increase and strain fluctuations. The results also show that Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te solid solution has the lowest Young's modulus (30.362 GPa), bulk and shear moduli (18.626 and 12.359 GPa), average sound velocity (1653.128 m/sec), Debye temperature (151.689 K), lattice thermal conductivity (0.574 W.m-1.K-1), dominant phonon wavelength (0.692 Å), and melting temperature (535.91 K). Moreover, Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te has the highest Grüneisen parameter with a reduced and temperature-independent lattice thermal conductivity. The positive correlation between ΘD and κ is revealed. Alloying of PbSe-based high-entropy by Sb, Sn, Te, and S atoms at the Se and Pb sites resulted in much higher shear strains resulted in the reduction of phonon velocity, a reduced ΘD, and a lower lattice thermal conductivity.

4.
Biomedicines ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831053

RESUMO

The spike protein (S-protein) is a crucial part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with its many domains responsible for binding, fusion, and host cell entry. In this review we use the density functional theory (DFT) calculations to analyze the atomic-scale interactions and investigate the consequences of mutations in S-protein domains. We specifically describe the key amino acids and functions of each domain, which are essential for structural stability as well as recognition and fusion processes with the host cell; in addition, we speculate on how mutations affect these properties. Such unprecedented large-scale ab initio calculations, with up to 5000 atoms in the system, are based on the novel concept of amino acid-amino acid-bond pair unit (AABPU) that allows for an alternative description of proteins, providing valuable information on partial charge, interatomic bonding and hydrogen bond (HB) formation. In general, our results show that the S-protein mutations for different variants foster an increased positive partial charge, alter the interatomic interactions, and disrupt the HB networks. We conclude by outlining a roadmap for future computational research of biomolecular virus-related systems.

5.
Microorganisms ; 10(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36296275

RESUMO

The attachment of the spike protein in SARS-CoV-2 to host cells and the initiation of viral invasion are two critical processes in the viral infection and transmission in which the presence of unique furin (S1/S2) and TMPRSS2 (S2') cleavage sites play a pivotal role. We provide a detailed analysis of the impact of the BA.1 Omicron mutations vicinal to these cleavage sites using a novel computational method based on the amino acid-amino acid bond pair unit (AABPU), a specific protein structural unit as a proxy for quantifying the atomic interaction. Our study is focused mainly on the spike region between subdomain 2 (SD2) and the central helix (CH), which contains both S1/S2 and S2' cleavage sites. Based on ab initio quantum calculations, we have identified several key features related to the electronic structure and bonding of the Omicron mutations that significantly increase the size of the relevant AABPUs and the positive charge. These findings enable us to conjecture on the biological role of Omicron mutations and their specific effects on cleavage sites and identify the principles that can be of some value in analyzing new variants.

6.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077490

RESUMO

The receptor-binding domain (RBD) is the essential part in the Spike-protein (S-protein) of SARS-CoV-2 virus that directly binds to the human ACE2 receptor, making it a key target for many vaccines and therapies. Therefore, any mutations at this domain could affect the efficacy of these treatments as well as the viral-cell entry mechanism. We introduce ab initio DFT-based computational study that mainly focuses on two parts: (1) Mutations effects of both Delta and Omicron variants in the RBD-SD1 domain. (2) Impact of Omicron RBD mutations on the structure and properties of the RBD-ACE2 interface system. The in-depth analysis is based on the novel concept of amino acid-amino acid bond pair units (AABPU) that reveal the differences between the Delta and/or Omicron mutations and its corresponding wild-type strain in terms of the role played by non-local amino acid interactions, their 3D shapes and sizes, as well as contribution to hydrogen bonding and partial charge distributions. Our results also show that the interaction of Omicron RBD with ACE2 significantly increased its bonding between amino acids at the interface providing information on the implications of penetration of S-protein into ACE2, and thus offering a possible explanation for its high infectivity. Our findings enable us to present, in more conspicuous atomic level detail, the effect of specific mutations that may help in predicting and/or mitigating the next variant of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/genética , Humanos , Mutação , Ligação Proteica , Receptores Virais/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Sindactilia
7.
J Phys Chem Lett ; 13(17): 3915-3921, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481766

RESUMO

The emergence of new SARS-CoV-2 Omicron variant of concern (OV) has exacerbated the COVID-19 pandemic because of a large number of mutations in the spike protein, particularly in the receptor-binding domain (RBD), resulting in highly contagious and/or vaccine-resistant strains. Herein, we present a systematic analysis based on detailed molecular dynamics (MD) simulations in order to understand how the OV RBD mutations affect the ACE2 binding. We show that the OV RBD binds to ACE2 more efficiently and tightly predominantly because of strong electrostatic interactions, thereby promoting increased infectivity and transmissibility compared to other strains. Some of the OV RBD mutations are predicted to affect the antibody neutralization either through their role in the S-protein conformational changes, such as S371L, S373P, and S375F, or through changing its surface charge distribution, such as G339D, N440K, T478K, and E484A. Other mutations, such as K417N, G446S, and Y505H, decrease the ACE2 binding, whereas S447N, Q493R, G496S, Q498R, and N501Y tend to increase it.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Mutação , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270013

RESUMO

The most recent Omicron variant of SARS-CoV-2 has caused global concern and anxiety. The only thing certain about this strain, with a large number of mutations in the spike protein, is that it spreads quickly, seems to evade immune defense, and mitigates the benefits of existing vaccines. Based on the ultra-large-scale ab initio computational modeling of the receptor binding motif (RBM) and the human angiotensin-converting enzyme-2 (ACE2) interface, we provide the details of the effect of Omicron mutations at the fundamental atomic scale level. In-depth analysis anchored in the novel concept of amino acid-amino acid bond pair units (AABPU) indicates that mutations in the Omicron variant are connected with (i) significant changes in the shape and structure of AABPU components, together with (ii) significant increase in the positive partial charge, which facilitates the interaction with ACE2. We have identified changes in bonding due to mutations in the RBM. The calculated bond order, based on AABPU, reveals that the Omicron mutations increase the binding strength of RBM to ACE2. Our findings correlate with and are instrumental to explain the current observations and can contribute to the prediction of next potential new variant of concern.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Mutação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação/genética , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Modelos Moleculares , Pandemias/prevenção & controle , Ligação Proteica , Conformação Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus , Replicação Viral
9.
Viruses ; 14(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35336872

RESUMO

The SARS-CoV-2 Delta variant is emerging as a globally dominant strain. Its rapid spread and high infection rate are attributed to a mutation in the spike protein of SARS-CoV-2 allowing for the virus to invade human cells much faster and with an increased efficiency. In particular, an especially dangerous mutation P681R close to the furin cleavage site has been identified as responsible for increasing the infection rate. Together with the earlier reported mutation D614G in the same domain, it offers an excellent instance to investigate the nature of mutations and how they affect the interatomic interactions in the spike protein. Here, using ultra large-scale ab initio computational modeling, we study the P681R and D614G mutations in the SD2-FP domain, including the effect of double mutation, and compare the results with the wild type. We have recently developed a method of calculating the amino-acid-amino-acid bond pairs (AABP) to quantitatively characterize the details of the interatomic interactions, enabling us to explain the nature of mutation at the atomic resolution. Our most significant finding is that the mutations reduce the AABP value, implying a reduced bonding cohesion between interacting residues and increasing the flexibility of these amino acids to cause the damage. The possibility of using this unique mutation quantifiers in a machine learning protocol could lead to the prediction of emerging mutations.


Assuntos
COVID-19 , SARS-CoV-2 , Simulação por Computador , Humanos , Mutação , SARS-CoV-2/genética
10.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055023

RESUMO

A rational therapeutic strategy is urgently needed for combating SARS-CoV-2 infection. Viral infection initiates when the SARS-CoV-2 receptor-binding domain (RBD) binds to the ACE2 receptor, and thus, inhibiting RBD is a promising therapeutic for blocking viral entry. In this study, the structure of lead antiviral candidate binder (LCB1), which has three alpha-helices (H1, H2, and H3), is used as a template to design and simulate several miniprotein RBD inhibitors. LCB1 undergoes two modifications: structural modification by truncation of the H3 to reduce its size, followed by single and double amino acid substitutions to enhance its binding with RBD. We use molecular dynamics (MD) simulations supported by ab initio density functional theory (DFT) calculations. Complete binding profiles of all miniproteins with RBD have been determined. The MD investigations reveal that the H3 truncation results in a small inhibitor with a -1.5 kcal/mol tighter binding to RBD than original LCB1, while the best miniprotein with higher binding affinity involves D17R or E11V + D17R mutation. DFT calculations provide atomic-scale details on the role of hydrogen bonding and partial charge distribution in stabilizing the minibinder:RBD complex. This study provides insights into general principles for designing potential therapeutics for SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Substituição de Aminoácidos , Antivirais/química , Biologia Computacional , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Internalização do Vírus
11.
Polymers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641249

RESUMO

The structure and properties of the arginine-glycine-aspartate (RGD) sequence of the 1FUV peptide at 0 K and body temperature (310 K) are systematically investigated in a dry and aqueous environment using more accurate ab initio molecular dynamics and density functional theory calculations. The fundamental properties, such as electronic structure, interatomic bonding, partial charge distribution, and dielectric response function at 0 and 310 K are analyzed, comparing them in dry and solvated models. These accurate microscopic parameters determined from highly reliable quantum mechanical calculations are useful to define the range and strength of complex molecular interactions occurring between the RGD peptide and the integrin receptor. The in-depth bonding picture analyzed using a novel quantum mechanical metric, the total bond order (TBO), quantifies the role played by hydrogen bonds in the internal cohesion of the simulated structures. The TBO at 310 K decreases in the dry model but increases in the solvated model. These differences are small but extremely important in the context of conditions prevalent in the human body and relevant for health issues. Our results provide a new level of understanding of the structure and properties of the 1FUV peptide and help in advancing the study of RGD containing other peptides.

12.
Materials (Basel) ; 14(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34640170

RESUMO

The dielectric spectra of complex biomolecules reflect the molecular heterogeneity of the proteins and are particularly important for the calculations of electrostatic (Coulomb) and electrodynamic (van der Waals) interactions in protein physics. The dielectric response of the proteins can be decomposed into different components depending on the size, structure, composition, locality, and environment of the protein in general. We present a new robust simulation method anchored in rigorous ab initio quantum mechanical calculations of explicit atomistic models, without any indeterminate parameters to compute and gain insight into the dielectric spectra of small proteins under different conditions. We implement this methodology to a polypeptide RGD-4C (1FUV) in different environments, and the SD1 domain in the spike protein of SARS-COV-2. Two peaks at 5.2-5.7 eV and 14.4-15.2 eV in the dielectric absorption spectra are observed for 1FUV and SD1 in vacuum as well as in their solvated and salted models.

13.
J Chem Inf Model ; 61(9): 4425-4441, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34428371

RESUMO

The spike protein of SARS-CoV-2 binds to the ACE2 receptor via its receptor-binding domain (RBD), with the RBD-ACE2 complex presenting an essential molecular target for vaccine development to stall the virus infection proliferation. The computational analyses at molecular, amino acid (AA), and atomic levels have been performed systematically to identify the key interacting AAs in the formation of the RBD-ACE2 complex for SARS-CoV and SARS-CoV-2 with its Alpha and Beta variants. Our study uses the molecular dynamics (MD) simulations with the molecular mechanics generalized Born surface area (MM-GBSA) method to predict the binding free energy (BFE) and to determine the actual interacting AAs, as well as two ab initio quantum chemical protocols based on the density functional theory (DFT) implementation. Based on MD results, Q493, Y505, Q498, N501, T500, N487, Y449, F486, K417, Y489, F456, Y495, and L455 have been identified as hotspots in SARS-CoV-2 RBD, while those in ACE2 are K353, K31, D30, D355, H34, D38, Q24, T27, Y83, Y41, and E35. RBD with Alpha and Beta variants has slightly different interacting AAs due to N501Y mutation. Both the electrostatic and hydrophobic interactions are the main driving force to form the AA-AA binding pairs. We confirm that Q493, Q498, N501, F486, K417, and F456 in RBD are the key residues responsible for the tight binding of SARS-CoV-2 with ACE2 compared to SARS-CoV. RBD with the Alpha variant binds with ACE2 stronger than the wild-type RBD or Beta. In the Beta variant, K417N reduces the binding, E484K slightly enhances it, and N501Y significantly increases it as in Alpha. The DFT results reveal that N487, Q493, Y449, T500, G496, G446, and G502 in RBD of SARS2 form pairs via specific hydrogen bonding with Q24, H34, E35, D38, Y41, Q42, and K353 in ACE2.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Humanos , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Comput Struct Biotechnol J ; 19: 1288-1301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623641

RESUMO

The COVID-19 pandemic poses a severe threat to human health with an unprecedented social and economic disruption. Spike (S) glycoprotein of the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the first contact with the ACE2 receptor in the human cell. We report results of ab initio computation of the spike protein, the largest ab initio quantum chemical computation to date on any bio-molecular system, using a divide and conquer strategy by focusing on individual structural domains. In this approach we divided the S-protein into seven structural domains: N-terminal domain (NTD), receptor binding domain (RBD), subdomain 1 (SD1), subdomain 2 (SD2), fusion peptide (FP), heptad repeat 1 with central helix (HR1-CH) and connector domain (CD). The entire Chain A has 14,488 atoms including the hydrogen atoms but excluding the amino acids with missing coordinates based on the PDB data (ID: 6VSB). The results include structural refinement, ab initio calculation of intra-molecular bonding mechanism, 3- dimensional non-local inter-amino acid interaction with implications for the inter-domain interaction. Details of the electronic structure, interatomic bonding, partial charge distribution and the role played by hydrogen bond network are discussed. In the interaction among structural domains, we present new insights for crucial hinge-like movement and fusion process. Extension of such calculation to the interface between the S-protein binding domain and ACE2 receptor can provide a pathway for computational understanding of mutations and the design of therapeutic drugs to combat the COVID-19 pandemic.

15.
Phys Chem Chem Phys ; 22(33): 18272-18283, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32756685

RESUMO

The COVID-19 pandemic poses a severe threat to human health with unprecedented social and economic disruption. Spike (S) glycoprotein in the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the early contact with the ACE2 receptor in the human cell. The subunit S1 in chain A of S-protein has four structural domains: the receptor binding domain (RBD), the n-terminal domain (NTD) and two subdomains (SD1, SD2). We report details of the intra- and inter-molecular binding mechanism of RBD using density functional theory, including electronic structure, interatomic bonding and partial charge distribution. We identify five strong hydrogen bonds and analyze their roles in binding. This provides a pathway to a quantum-chemical understanding of the interaction between the S-protein and the ACE2 receptor with insights into the function of conserved features in the ACE2 receptor binding domain that could inform vaccine and drug development.


Assuntos
Betacoronavirus/química , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Teoria da Densidade Funcional , Humanos , Ligação de Hidrogênio , Modelos Químicos , Peptidil Dipeptidase A/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química
16.
RSC Adv ; 10(65): 39831-39841, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35515388

RESUMO

The relation between amino acid (AA) sequence and biologically active conformation controls the process of polypeptide chains folding into three-dimensional (3d) protein structures. The recent achievements in the resolution achieved in cryo-electron microscopy coupled with improvements in computational methodologies have accelerated the analysis of structures and properties of proteins. However, the detailed interaction between AAs has not been fully elucidated. Herein, we present a de novo method to evaluate inter-amino acid interactions based on the concept of accurately evaluating the amino acid bond pairs (AABP). The results obtained enabled the identification of complex 3d long-range interconnected AA interacting network in proteins. The method is applied to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. We show that although nearest-neighbor AAs in the primary sequence have large AABP, other nonlocal AAs make substantial contribution to AABP with significant participation of both covalent and hydrogen bonding. Detailed analysis of AABP in RBD reveals the pivotal role they play in sequence conservation with profound implications on residue mutations and for therapeutic drug design. This approach could be easily applied to many other proteins of biomedical interest in life sciences.

17.
Phys Chem Chem Phys ; 20(46): 29001-29011, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30371698

RESUMO

Zeolitic imidazolate frameworks (ZIFs)-a subset of metal-organic frameworks (MOFs)-have recently attracted immense attention. Many crystalline ZIFs (c-ZIFs) have highly porous zeolite structures that are ideal for molecular encapsulation. Recently emerging non-crystalline or amorphous ZIFs (a-ZIFs) with a similar short-range order are of interest because they can be converted from c-ZIFs for large-scale production. Here, we present a computational study of the deformation behavior of a unique a-ZIF model by simulating step-wise compression and expansion with strains between -0.389 and +0.376. An insulator-to-metal transition is observed at 51 GPa leading to a multicomponent light amorphous alloy of only 3.68 g (cm)-3. A high-density amorphous-to-amorphous phase transition is observed due to the sudden formation of N-N bond pairs. The systematic expansion of the a-ZIF retains the framework softness until it fractures at high strain. Based on the expansion data, we propose an empirical formula for super-soft materials, which is in line with available experimental data.

18.
ACS Appl Mater Interfaces ; 9(12): 11016-11024, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263551

RESUMO

Inorganic/biomolecule nanohybrids can combine superior electronic and optical properties of inorganic nanostructures and biomolecules for optoelectronics with performance far surpassing that achievable in conventional materials. The key toward a high-performance inorganic/biomolecule nanohybrid is to design their interface based on the electronic structures of the constituents. A major challenge is the lack of knowledge of most biomolecules due to their complex structures and composition. Here, we first calculated the electronic structure and optical properties of one of the cytochrome c (Cyt c) macromolecules (PDB ID: 1HRC ) using ab initio OLCAO method, which was followed by experimental confirmation using ultraviolet photoemission spectroscopy. For the first time, the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of Cyt c, a well-known electron transport chain in biological systems, were obtained. On the basis of the result, pairing the Cyt c with semiconductor single-wall carbon nanotubes (s-SWCNT) was predicted to have a favorable band alignment and built-in electrical field for exciton dissociation and charge transfer across the s-SWCNT/Cyt c heterojunction interface. Excitingly, photodetectors based on the s-SWCNT/Cyt c heterojunction nanohybrids demonstrated extraordinary ultra-broadband (visible light to infrared) responsivity (46-188 A W-1) and figure-of-merit detectivity D* (1-6 × 1010 cm Hz1/2 W-1). Moreover, these devices can be fabricated on transparent flexible substrates by a low-lost nonvacuum method and are stable in air. These results suggest that the s-SWCNT/biomolecule nanohybrids may be promising for the development of CNT-based ultra-broadband photodetectors.

19.
R Soc Open Sci ; 4(12): 170982, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29308239

RESUMO

The electronic structure and interatomic bonding of pyrophosphate crystal K2Mg (H2P2O7)2·2H2O are investigated for the first time showing complex interplay of different types of bindings. The existing structure from single-crystal X-ray diffraction is not sufficiently refined, resulting in unrealistic short O─H bonds which is rectified by high-precision density functional theory (DFT) calculation. K2Mg (H2P2O7)2·2H2O has a direct gap of 5.22 eV and a small electron effective mass of 0.14 me. Detailed bond analysis between every pair of atoms reveals the complexity of various covalent, ionic, hydrogen bonding and bridging bonding and their sensitive dependence on structural differences. The K--O bonds are much weaker than Mg--O bonds and contributions from the hydrogen bonds are non-negligible. Quantitative analysis of internal cohesion in terms of total bond order density and partial bond order density divulges the relative importance of different types of bonding. The calculated optical absorptions show multiple peaks and a sharp Plasmon peak at 23 eV and a refractive index of 1.44. The elastic and mechanical properties show features unique to this low-symmetry crystal. Phonon calculation gives vibrational frequencies in agreement with reported Raman spectrum. These results provide new insights indicating that acidic pyrophosphates could have a variety of unrealized applications in advanced technology.

20.
Inorg Chem ; 55(5): 2114-22, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26890202

RESUMO

A new ternary compound with composition Cu5Sn2Te7 has been synthesized using the stoichiometric reaction of Cu, Sn, and Te. The compound crystallizes in C2 space group with unit cell parameters of a = 13.549(2) Å, b = 6.0521(11) Å, c = 9.568(2) Å, and ß = 98.121(2)°. Cu5Sn2Te7 is a superstructure of sphalerite and exhibits tetrahedral coordination of Cu, Sn, and Te atoms, containing a unique adamantane-like arrangement. The compound is formally mixed valent with a high electrical conductivity of 9.8 × 10(5) S m(-1) at 300 K and exhibits metallic behavior having p-type charge carriers as indicated from the positive Seebeck coefficient. Hall effect measurements further confirm holes as charge carriers with a carrier density of 1.39 × 10(21) cm(-3) and Hall mobility of 4.5 cm(2) V(-1) s(-1) at 300 K. The electronic band structure calculations indicate the presence of a finite density of states around the Fermi level and agree well with the p-type metallic conductivity. Band structure analysis suggests that the effective mass of the hole state is small and could be responsible for high electronic conductivity and Hall mobility. The high thermal conductivity of 15.1 W m(-1) K(-1) at 300 K coupled with the low Seebeck coefficient results in a poor thermoelectric figure of merit (ZT) for this compound. Theoretical calculations indicate that if Cu5Sn2Te7 is turned into a valence precise compound by substituting one Cu by a Zn, a semiconducting material, Cu4ZnSn2Te7, with a direct band gap of ∼ 0.5 eV can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...