Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 353: 120103, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280248

RESUMO

Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.


Assuntos
Corantes , Poluentes Químicos da Água , Humanos , Corantes/metabolismo , Ecossistema , Biodegradação Ambiental , Plantas/metabolismo , Têxteis , DNA , Indústria Têxtil , Poluentes Químicos da Água/metabolismo
2.
Environ Res ; 241: 117601, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977271

RESUMO

Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.


Assuntos
Nanopartículas , Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Resíduos de Praguicidas/análise , Inteligência Artificial , Ecossistema
3.
Clin Exp Immunol ; 206(3): 346-353, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529822

RESUMO

Regulatory T cells (Tregs ) are specific subtype of T cells that play a central role in sustaining self-antigen tolerance and restricting inflammatory tissue damage. More recently, additional direct functions of Tregs in mammalian tissue repair have emerged, but the regenerative potential of Tregs in non-mammalian vertebrates has not been explored despite the latter possessing a highly developed adaptive immune system. Why complex organs such as the caudal fin, heart, brain, spinal cord and retina regenerate in certain non-mammalian vertebrates, but not in mammals, is an interesting but unresolved question in the field of regenerative biology. Inflammation has traditionally been thought to be an impediment to regeneration due to the formation of scars. Regenerative decline in higher organisms has been speculated to be the evolutionary advent of adaptive immunity. Recent studies, however, have shown that the innate inflammatory response in non-mammalian organisms is required for organ regeneration. It has also been found that highly advanced adaptive immunity is no longer incompatible with regeneration and for that, Tregs are important. Zebrafish regulatory T cells (zTregs ) migrate rapidly to the injury site in damaged organs, where they facilitate the proliferation of regeneration precursor cells by generating tissue-specific regenerative factors by a process distinct from the canonical anti-inflammatory pathway. We review both reparative and proregenerative roles of Tregs in mammals and zebrafish, respectively, and also give an overview of the forkhead box protein 3 (FoxP3) -dependent immunosuppressive function of Tregs in zebrafish, which makes it a useful model organism for future Treg biology and research.


Assuntos
Regeneração/fisiologia , Linfócitos T Reguladores/imunologia , Cicatrização/imunologia , Peixe-Zebra/imunologia , Imunidade Adaptativa/imunologia , Animais , Proliferação de Células/fisiologia , Citocinas/metabolismo , Imunidade Inata/imunologia , Inflamação/patologia , Regeneração/imunologia
4.
Brain Behav Immun ; 94: 8-10, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33588075

RESUMO

Regeneration refers to the structural growth of damaged organs or tissues and their functional integration into the existing system. Injury induced regenerative response is extremely variable across the animal kingdom. On one hand the early acoelomates can reform the entire animal even from dissociated cells, on the other; the capacity in humans is mostly restricted to wound healing. A general trend of regenerative ability is the existence of an inverse relationship between the robustness of immune system and the degree of regeneration throughout the animal kingdom. This review summarizes the evolutionary advancement of immune system in different groups and gives an account of their respective regenerative competency.


Assuntos
Regeneração , Cicatrização , Animais , Humanos , Sistema Imunitário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...