Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38370763

RESUMO

Importance: Wrist-worn activity monitors provide biomarkers of health by non-obtrusively measuring the timing and amount of rest and physical activity (rest-activity rhythms, RARs). The morphology and robustness of RARs vary by age, gender, and sociodemographic factors, and are perturbed in various chronic illnesses. However, these are cross-sectionally derived associations from recordings lasting 4-10 days, providing little insights into how RARs vary with time. Objective: To describe how RAR parameters can vary or evolve with time (~months). Design Setting and Participants: 48 very long actograms ("VLAs", ≥90 days in duration) were identified from subjects enrolled in the STAGES (Stanford Technology, Analytics and Genomics in Sleep) study, a prospective cross-sectional, multi-site assessment of individuals > 13 years of age that required diagnostic polysomnography to address a sleep complaint. A single 3-year long VLA (author GD) is also described. Exposures/Intervention: None planned. Main Outcomes and Measures: For each VLA, we assessed the following parameters in 14-day windows: circadian/ultradian spectrum, pseudo-F statistic ("F"), cosinor amplitude, intradaily variability, interdaily stability, acrophase and estimates of "sleep" and non-wearing. Results: Included STAGES subjects (n = 48, 30 female) had a median age of 51, BMI of 29.4kg/m2, Epworth Sleepiness Scale score (ESS) of 10/24 and a median recording duration of 120 days. We observed marked within-subject undulations in all six RAR parameters, with many subjects displaying ultradian rhythms of activity that waxed and waned in intensity. When appraised at the group level (nomothetic), averaged RAR parameters remained remarkably stable over a ~4 month recording period. Cohort-level deficits in average RAR robustness associated with unemployment or high BMI (>29.4) also remained stable over time. Conclusions and Relevance: Through an exemplary set of months-long wrist actigraphy recordings, this study quantitatively depicts the longitudinal stability and dynamic range of human rest-activity rhythms. We propose that continuous and long-term actigraphy may have broad potential as a holistic, transdiagnostic and ecologically valid monitoring biomarker of changes in chronobiological health. Prospective recordings from willing subjects will be necessary to precisely define contexts of use.

2.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745312

RESUMO

Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...