Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 10(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823511

RESUMO

The textile industry provides for the needs of people especially in apparel and household items. The industry also discharges dye-containing wastewater that is typically challenging to treat. Despite the application of the biological and chemical treatments for the treatment of textile wastewater, these methods have their own drawbacks such as non-environment friendly, high cost and energy intensive. This research investigates the efficiency of the celestine blue dye removal from simulated textile wastewater by electrocoagulation (EC) method using iron (Fe) electrodes through an electrolytic cell, integrated with nylon 6,6 nanofiber (NF) membrane filtration for the separation of the flocculants from aqueous water. Based on the results, the integrated system achieves a high dye removal efficiency of 79.4%, by using 1000 ppm of sodium chloride as the electrolyte and 2 V of voltage at a constant pH of 7 and 10 ppm celestine blue dye solution, compared to the standalone EC method in which only 43.2% removal was achieved. Atomic absorption spectroscopy analysis was used to identify the traces of iron in the residual EC solution confirming the absence of iron. The EC-integrated membrane system thus shows superior performance compared to the conventional method whereby an additional 10-30% of dye was removed at 1 V and 2 V using similar energy consumptions.

2.
Polymers (Basel) ; 11(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861059

RESUMO

Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...