Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2309669120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064512

RESUMO

Tools are objects that are manipulated by agents with the intention to cause an effect in the world. We show that the cognitive capacity to understand tools is present in young infants, even if these tools produce arbitrary, causally opaque effects. In experiments 1-2, we used pupillometry to show that 8-mo-old infants infer an invisible causal contact to account for the-otherwise unexplained-motion of a ball. In experiments 3, we probed 8-mo-old infants' account of a state change event (flickering of a cube) that lies outside of the explanatory power of intuitive physics. Infants repeatedly watched an intentional agent launch a ball behind an occluder. After a short delay, a cube, positioned at the other end of the occluder began flickering. Rare unoccluded events served to probe infants' representation of what happened behind the occluder. Infants exhibited larger pupil dilation, signaling more surprise, when the ball stopped before touching the cube, than when it contacted the cube, suggesting that infants inferred that the cause of the state change was contact between the ball and the cube. This effect was canceled in experiment 4, when an inanimate sphere replaced the intentional agent. Altogether, results suggest that, in the infants' eyes, a ball (an inanimate object) has the power to cause an arbitrary state change, but only if it inherits this power from an intentional agent. Eight-month-olds are thus capable of representing complex event structures, involving an intentional agent causing a change with a tool.


Assuntos
Intenção , Intuição , Lactente , Humanos , Olho
2.
Neuroimage ; 276: 120208, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268095

RESUMO

In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials (ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which in infants, was modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in human infants.


Assuntos
Eletroencefalografia , Potenciais Evocados , Adulto , Lactente , Humanos , Potenciais Evocados/fisiologia
3.
J Cogn Neurosci ; 33(7): 1343-1353, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496405

RESUMO

To navigate the social world, humans must represent social entities and the relationships between those entities, starting with spatial relationships. Recent research suggests that two bodies are processed with particularly high efficiency in visual perception, when they are in a spatial positioning that cues interaction, that is, close and face-to-face. Socially relevant spatial relations such as facingness may facilitate visual perception by triggering grouping of bodies into a new integrated percept, which would make the stimuli more visible and easier to process. We used EEG and a frequency-tagging paradigm to measure a neural correlate of grouping (or visual binding), while female and male participants saw images of two bodies face-to-face or back-to-back. The two bodies in a dyad flickered at frequency F1 and F2, respectively, and appeared together at a third frequency Fd (dyad frequency). This stimulation should elicit a periodic neural response for each body at F1 and F2, and a third response at Fd, which would be larger for face-to-face (vs. back-to-back) bodies, if those stimuli yield additional integrative processing. Results showed that responses at F1 and F2 were higher for upright than for inverted bodies, demonstrating that our paradigm could capture neural activity associated with viewing bodies. Crucially, the response to dyads at Fd was larger for face-to-face (vs. back-to-back) dyads, suggesting integration mediated by grouping. We propose that spatial relations that recur in social interaction (i.e., facingness) promote binding of multiple bodies into a new representation. This mechanism can explain how the visual system contributes to integrating and transforming the representation of disconnected body shapes into structured representations of social events.


Assuntos
Corpo Humano , Percepção Visual , Sinais (Psicologia) , Feminino , Humanos , Masculino , Orientação Espacial , Reconhecimento Visual de Modelos , Estimulação Luminosa , Interação Social
4.
Dev Cogn Neurosci ; 42: 100752, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32072930

RESUMO

Infant brain development incorporates several intermingled mechanisms leading to intense and asynchronous maturation across cerebral networks and functional modalities. Combining electroencephalography (EEG) and diffusion magnetic resonance imaging (MRI), previous studies in the visual modality showed that the functional maturation of the event-related potentials (ERP) during the first postnatal semester relates to structural changes in the corresponding white matter pathways. Here investigated similar issues in the auditory modality. We measured ERPs to syllables in 1- to 6-month-old infants and related them to the maturational properties of underlying neural substrates measured with diffusion tensor imaging (DTI). We first observed a decrease in the latency of the auditory P2, and in the diffusivities in the auditory tracts and perisylvian regions with age. Secondly, we highlighted some of the early functional and structural substrates of lateralization. Contralateral responses to monoaural syllables were stronger and faster than ipsilateral responses, particularly in the left hemisphere. Besides, the acoustic radiations, arcuate fasciculus, middle temporal and angular gyri showed DTI asymmetries with a more complex and advanced microstructure in the left hemisphere, whereas the reverse was observed for the inferior frontal and superior temporal gyri. Finally, after accounting for the age-related variance, we correlated the inter-individual variability in P2 responses and in the microstructural properties of callosal fibers and inferior frontal regions. This study combining dedicated EEG and MRI approaches in infants highlights the complex relation between the functional responses to auditory stimuli and the maturational properties of the corresponding neural network.


Assuntos
Vias Auditivas/anatomia & histologia , Encéfalo/anatomia & histologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Feminino , Humanos , Lactente , Masculino
5.
Brain Struct Funct ; 223(6): 2893-2905, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687282

RESUMO

The left hemisphere specialization for language is a well-established asymmetry in the human brain. Structural and functional asymmetries are observed as early as the prenatal period suggesting genetically determined differences between both hemispheres. The corpus callosum is a large tract connecting mostly homologous areas; some have proposed that it might participate in an enhancement of the left-hemispheric advantage to process speech. To investigate its role in early development, we compared 13 3-4-month-old infants with an agenesis of the corpus callosum ("AgCC") with 18 typical infants using high-density electroencephalography in an auditory task. We recorded event-related potentials for speech stimuli (syllables and babbling noise), presented binaurally (same syllable in both ears), monaurally (babbling noise in one ear) and dichotically (syllable in one ear and babbling noise in the other ear). In response to these stimuli, both groups developed an anterior positivity synchronous with a posterior negativity, yet the topography significantly differed between groups likely due to the atypical gyration of the medial surface in AgCC. In particular, the anterior positivity was lateral in AgCC infants while it covered the midline in typical infants. We then measured the latencies of the main auditory response (P2 at this age) for the different conditions on the symmetrical left and right clusters. The main difference between groups was a ~ 60 ms delay in typical infants relative to AgCC, for the ipsilateral response (i.e. left hemisphere) to babbling noise presented in the left ear, whereas no difference was observed in the case of right-ear stimulation. We suggest that our results highlight an asymmetrical callosal connectivity favoring the right-to-left hemisphere direction in typical infants. This asymmetry, similar to recent descriptions in adults, might contribute to an enhancement of left lateralization for language processing beyond the initial cortical left-hemisphere advantage.


Assuntos
Agenesia do Corpo Caloso/fisiopatologia , Vias Auditivas/fisiopatologia , Mapeamento Encefálico , Lateralidade Funcional/fisiologia , Transferência de Experiência/fisiologia , Estimulação Acústica , Agenesia do Corpo Caloso/patologia , Análise de Variância , Vias Auditivas/patologia , Testes com Listas de Dissílabos , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Lactente , Masculino , Tempo de Reação/fisiologia
6.
Nat Hum Behav ; 2(1): 67-79, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980049

RESUMO

The ontogeny of the functional asymmetries of the human brain is poorly understood. Are they a consequence of differential development based on competition mechanisms, or are they constitutive of the human brain architecture from the start? Using structural magnetic resonance imaging and a face-discrimination electroencephalography paradigm with lateralized presentation of faces, we studied face perception in infants over the first postnatal semester. We showed that the corpus callosum is sufficiently mature to transfer visual information across hemispheres, but the inter-hemispheric transfer time of early visual responses is modulated by callosal fibre myelination. We also revealed that only the right hemisphere shows evidence of face discrimination when presented in the left visual hemifield. This capability improved throughout the first semester with no evidence of discrimination in the left hemisphere. Face-processing lateralization is thus a characteristic of the infant's extra-striate visual cortex, highlighting the differential left-right organization of the human brain already established in infanthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Lateralidade Funcional , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Discriminação Psicológica/fisiologia , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Lactente , Masculino , Imagem Multimodal , Bainha de Mielina
7.
Brain Plast ; 2(1): 49-69, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29765848

RESUMO

Already during the last trimester of gestation, functional responses are recorded in foetuses and preterm newborns, attesting an already complex cerebral architecture. Then throughout childhood, anatomical connections are further refined but at different rates and over asynchronous periods across functional networks. Concurrently, infants gradually achieve new psychomotor and cognitive skills. Only the recent use of non-invasive techniques such as magnetic resonance imaging (MRI) and magneto- and electroencephalography (M/EEG) has opened the possibility to understand the relationships between brain maturation and skills development in vivo. In this review, we describe how these techniques have been applied to study the white matter maturation. At the structural level, the early architecture and myelination of bundles have been assessed with diffusion and relaxometry MRI, recently integrated in multi-compartment models and multi-parametric approaches. Nevertheless, technical limitations prevent us to map major developmental mechanisms such as fibers growth and pruning, and the progressive maturation at the bundle scale in case of mixing trajectories. At the functional level, M/EEG have been used to record different visual, somatosensory and auditory evoked responses. Because the conduction velocity of neural impulses increases with the myelination of connections, major changes in the components latency are observed throughout development. But so far, only a few studies have related structural and functional markers of white matter myelination. Such multi-modal approaches will be a major challenge in future research, not only to understand normal development, but also to characterize early mechanisms of pathologies and the influence of fetal and perinatal interventions on later outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...