Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20606, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663895

RESUMO

InGaN/GaN quantum wells (QWs) with sub-nanometer thickness can be employed in short-period superlattices for bandgap engineering of efficient optoelectronic devices, as well as for exploiting topological insulator behavior in III-nitride semiconductors. However, it had been argued that the highest indium content in such ultra-thin QWs is kinetically limited to a maximum of 33%, narrowing down the potential range of applications. Here, it is demonstrated that quasi two-dimensional (quasi-2D) QWs with thickness of one atomic monolayer can be deposited with indium contents far exceeding this limit, under certain growth conditions. Multi-QW heterostructures were grown by plasma-assisted molecular beam epitaxy, and their composition and strain were determined with monolayer-scale spatial resolution using quantitative scanning transmission electron microscopy in combination with atomistic calculations. Key findings such as the self-limited QW thickness and the non-monotonic dependence of the QW composition on the growth temperature under metal-rich growth conditions suggest the existence of a substitutional synthesis mechanism, involving the exchange between indium and gallium atoms at surface sites. The highest indium content in this work approached 50%, in agreement with photoluminescence measurements, surpassing by far the previously regarded compositional limit. The proposed synthesis mechanism can guide growth efforts towards binary InN/GaN quasi-2D QWs.

2.
Nanotechnology ; 30(28): 285304, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30917358

RESUMO

Gallium nitride (GaN) all-around (wrap) gate vertical nanowire (V-NW) field-effect transistors (FETs) are favorable for enhanced electrostatic control of the gate and selectivity for normally on/off operation. In this work, GaN V-NW FETs with a Schottky barrier gate (V-NW MESFETs), were fabricated for the first time. A nanofabrication process with comprehensive description of all processing steps is reported. It was validated with the demonstration of GaN V-NW MESFETs consisting of an array of 900 (30 × 30) GaN NWs with the narrowest until now reported diameter of 100 nm and all-around gate length of 250 nm. The GaN NWs were formed by a top-down approach, which combines conventional nanopatterning techniques and anisotropic wet etching of an initial GaN epilayer, grown by plasma assisted molecular beam epitaxy on a sapphire (0001) substrate. DC I-V characteristics exhibited normally-off operation and threshold voltage of +0.4 V, due to electron depletion region from the all-around Schottky barrier. A maximum drain-source current density (J ds) of 330 A cm-2 and maximum transconductance (g m) of 285 S cm-2 were obtained from I-V measurements. The results and directions for further optimization were discussed.

3.
Biosens Bioelectron ; 22(12): 2796-801, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17098415

RESUMO

We investigate the use of the AlGaN/GaN high electron mobility transistor (HEMT) as a novel transducer for the development of ion-selective chemically modified HEMT sensors (ChemHEMTs). For this, polyvinyl chloride (PVC) membrane doped with ion-selective ionophores is deposited onto the area of the gate for the chemical recognition step, while the AlGaN/GaN HEMT is used as the transducer. In particular, the use of a valinocycin doped membrane with thickness of 50 microm generates a sensor with excellent analytical characteristics for the monitoring of K(+). The K(+)-ChemHEMT has sensitivity of 52.4 mV/pK(+)in the linear range of 10(-5) to 10(-2)M, while the detection limit is in the order of 3.1 x 10(-6)M. Also, the sensor shows selectivity similar to valinomycin-based ISEs, while the signal stability over time and the measurement to measurement reproducibility are very good.


Assuntos
Compostos de Alumínio/química , Técnicas Biossensoriais/instrumentação , Gálio/química , Potássio/análise , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Elétrons , Potenciometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...