Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(11): e2400032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471754

RESUMO

A versatile and robust end-group derivatization approach using oximes has been developed for the detection of oxidative degradation of synthetic polyisoprenes and polybutadiene. This method demonstrates broad applicability, effectively monitoring degradation across a wide molecular weight range through ultraviolet (UV)-detection coupled to gel permeation chromatography. Importantly, it enables the effective monitoring of degradation via derivatization-induced UV-maximum shifts, even in the presence of an excess of undegraded polyene, overcoming limitations previously reported with refractive index detectors. Notably, this oxime-based derivatization methodology is used in enzymatic degradation experiments of synthetic polyisoprenes characterized by a cis: trans ratio with the rubber oxygenase LcpK30. It reveals substantial UV absorption in derivatized enzymatic degradation products of polyisoprene with molecular weights exceeding 1000 g mol-1 - an unprecedented revelation for this enzyme's activity on such synthetic polyisoprenes. This innovative approach holds promise as a valuable tool for advancing research into the degradation of synthetic polyisoprenes and polybutadiene, particularly under conditions of low organocatalytic or enzymatic degradation activity. With its broad applicability and capacity to reveal previously hidden degradation processes, it represents a noteworthy contribution to sustainable polymer chemistry.


Assuntos
Butadienos , Cromatografia em Gel , Oxigenases , Raios Ultravioleta , Butadienos/química , Oxigenases/química , Oxigenases/metabolismo , Borracha/química , Elastômeros/química , Oximas/química , Estrutura Molecular
2.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746032

RESUMO

Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and recyclable. We report two novel multiphase vitrimeric materials prepared by the cross-linking of two polymers, namely poly(triethylene glycol sebacate) and poly(2-hydroxyethyl acrylate), using zinc acetate or tin(II) 2-ethylhexanoate as catalysts, which exhibit significantly low Tv temperatures of 39 °C and 29 °C, respectively. The transesterification reactions allow rapid and pronounced stress relaxation at high temperatures, following the Arrhenius law. The lower Tv of these vitrimers could be attributable to the flexible long chains of these polymers and the significant excess of OH moieties present along the main chain of the polymer. The design of such multiphase vitrimers is not only useful for the practical application of vitrimers to reduce plastic waste but could also facilitate further development of functional polymer materials that can be reprocessed at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...