Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 231: 107397, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753915

RESUMO

BACKGROUND AND OBJECTIVE: The artificial segmentation of early gastric cancer (EGC) lesions in gastroscopic images remains a challenging task due to reasons including the diversity of mucosal features, irregular edges of EGC lesions and nuances between EGC lesions and healthy background mucosa. Hence, this study proposed an automatic segmentation framework: co-spatial attention and channel attention based triple-branch ResUnet (CSA-CA-TB-ResUnet) to achieve accurate segmentation of EGC lesions for aiding clinical diagnosis and treatment. METHODS: The input gastroscopic image sequences of the triple-branch segmentation network CSA-CA-TB-ResUnet is firstly generated by the designed multi-branch input preprocessing (MBIP) module in order to fully utilize massive correlation information among multiple gastroscopic images of the same a lesion. Then, the proposed CSA-CA-TB-ResUnet performs the segmentation of EGC lesion, in which the co-spatial attention (CSA) mechanism is designed to activate the spatial location of EGC lesions by leveraging on the correlations among multiple gastroscopic images of the same EGC lesion, and the channel attention (CA) mechanism is introduced to extract subtle discriminative features of EGC lesions by capturing the interdependencies between channel features. Finally, two gastroscopic images datasets from different digestive endoscopic centers in the southwest and northeast regions of China respectively were collected to validate the performances of proposed segmentation method. RESULTS: The correlation information among gastroscopic images was confirmed to be able to improve the accuracy of EGC segmentation. On another unseen dataset, our EGC segmentation method achieves Jaccard similarity index (JSI) of 84.54% (95% confidence interval (CI), 83.49%-85.56%), threshold Jaccard index (TJI) of 81.73% (95% CI, 79.70%-83.61%), Dice similarity coefficient (DSC) of 91.08% (95% CI, 90.40%-91.76%) and pixel-wise accuracy (PA) of 91.18% (95% CI, 90.43%-91.87%), which is superior to other state-of-the-art methods. Even on the challenging small lesions, the segmentation results of our CSA-CA-TB-ResUnet-based method are consistently and significantly better than other state-of-the-art methods. We also compared the segmentation result of our model with the diagnostic accuracy with junior/senior expert. The comparison results indicated that our model performed better than the junior expert. CONCLUSIONS: This study proposed a novel CSA-CA-TB-ResUnet-based EGC segmentation method and it has a potential for real-time application in improving EGC clinical diagnosis and minimally invasive surgery.


Assuntos
Redes Neurais de Computação , Neoplasias Gástricas , Humanos , Gastroscopia , Detecção Precoce de Câncer , China , Processamento de Imagem Assistida por Computador/métodos
2.
J Pers Med ; 13(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36675779

RESUMO

BACKGROUND: Accurate gastrointestinal (GI) lesion segmentation is crucial in diagnosing digestive tract diseases. An automatic lesion segmentation in endoscopic images is vital to relieving physicians' burden and improving the survival rate of patients. However, pixel-wise annotations are highly intensive, especially in clinical settings, while numerous unlabeled image datasets could be available, although the significant results of deep learning approaches in several tasks heavily depend on large labeled datasets. Limited labeled data also hinder trained models' generalizability under fully supervised learning for computer-aided diagnosis (CAD) systems. METHODS: This work proposes a generative adversarial learning-based semi-supervised segmentation framework for GI lesion diagnosis in endoscopic images to tackle the challenge of limited annotations. The proposed approach leverages limited annotated and large unlabeled datasets in the training networks. We extensively tested the proposed method on 4880 endoscopic images. RESULTS: Compared with current related works, the proposed method validates better results (Dice similarity coefficient = 89.42 ± 3.92, Intersection over union = 80.04 ± 5.75, Precision = 91.72 ± 4.05, Recall = 90.11 ± 5.64, and Hausdorff distance = 23.28 ± 14.36) on the challenging multi-sited datasets, confirming the effectiveness of the proposed framework. CONCLUSION: We explore a semi-supervised lesion segmentation method to employ the full use of multiple unlabeled endoscopic images to improve lesion segmentation accuracy. Experimental results confirmed the potential of our method and outperformed promising results compared with the current related works. The proposed CAD system can minimize diagnostic errors.

3.
Int J Comput Assist Radiol Surg ; 17(7): 1289-1302, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35678960

RESUMO

PURPOSE: As with several medical image analysis tasks based on deep learning, gastrointestinal image analysis is plagued with data scarcity, privacy concerns and an insufficient number of pathology samples. This study examines the generation and utility of synthetic samples of colonoscopy images with polyps for data augmentation. METHODS: We modify and train a pix2pix model to generate synthetic colonoscopy samples with polyps to augment the original dataset. Subsequently, we create a variety of datasets by varying the quantity of synthetic samples and traditional augmentation samples, to train a U-Net network and Faster R-CNN model for segmentation and detection of polyps, respectively. We compare the performance of the models when trained with the resulting datasets in terms of F1 score, intersection over union, precision and recall. Further, we compare the performances of the models with unseen polyp datasets to assess their generalization ability. RESULTS: The average F1 coefficient and intersection over union are improved with increasing number of synthetic samples in U-Net over all test datasets. The performance of the Faster R-CNN model is also improved in terms of polyp detection, while decreasing the false-negative rate. Further, the experimental results for polyp detection outperform similar studies in the literature on the ETIS-PolypLaribDB dataset. CONCLUSION: By varying the quantity of synthetic and traditional augmentation, there is the potential to control the sensitivity of deep learning models in polyp segmentation and detection. Further, GAN-based augmentation is a viable option for improving the performance of models for polyp segmentation and detection.


Assuntos
Pólipos do Colo/diagnóstico , Colonoscopia , Processamento de Imagem Assistida por Computador , Colonoscopia/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...