Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 52(9): 2213-20, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941759

RESUMO

To determine the mechanism(s) by which insulin inhibits endogenous glucose production (EGP) in nondiabetic humans, insulin was infused at rates of 0.25, 0.375, or 0.5 mU. kg(-1). min(-1) and glucose was clamped at approximately 5.5 mmol/l. EGP, gluconeogenesis, and uridine-diphosphoglucose (UDP)-glucose flux were measured using [3-(3)H]glucose, deuterated water, and the acetaminophen glucuronide methods, respectively. An increase in insulin from approximately 75 to approximately 100 to approximately 150 pmol/l ( approximately 12.5 to approximately 17 to approximately 25 microU/ml) resulted in progressive (ANOVA; P < 0.02) suppression of EGP (13.1 +/- 1.3 vs. 11.7 +/- 1.03 vs. 6.4 +/- 2.15 micromol x kg(-1) x min(-1)) that was entirely due to a progressive decrease (ANOVA; P < 0.05) in the contribution of glycogenolysis to EGP (4.7 +/- 1.7 vs. 3.4 +/- 1.2 vs. -2.1 +/- 1.3 micro mol x kg(-1) x min(-1)). In contrast, both the contribution of gluconeogenesis to EGP (8.4 +/- 1.0 vs. 8.3 +/- 1.1 vs. 8.5 +/- 1.3 micro mol x kg(-1) x min(-1)) and UDP-glucose flux (5.0 +/- 0.4 vs. 5.0 +/- 0.3 vs. 4.0 +/- 0.5 micro mol x kg(-1) x min(-1)) remained unchanged. The contribution of the direct (extracellular) pathway to UDP-glucose flux was minimal and constant during all insulin infusions. We conclude that higher insulin concentrations are required to suppress the contribution of gluconeogenesis of EGP than are required to suppress the contribution of glycogenolysis to EGP in healthy nondiabetic humans. Since suppression of glycogenolysis occurred without a decrease in UDP-glucose flux, this implies that insulin inhibits EGP, at least in part, by directing glucose-6-phosphate into glycogen rather than through the glucose-6-phosphatase pathway.


Assuntos
Gluconeogênese/efeitos dos fármacos , Glicogênio/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Adulto , Glicemia , Peptídeo C/sangue , Feminino , Glucagon/administração & dosagem , Glucagon/sangue , Glucose/biossíntese , Glucose/farmacocinética , Hormônios/administração & dosagem , Hormônio do Crescimento Humano/sangue , Humanos , Hipoglicemiantes/sangue , Insulina/sangue , Masculino , Somatostatina/administração & dosagem , Trítio , Uridina Difosfato Glucose/farmacocinética , Água
2.
Diabetes ; 52(1): 38-42, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502491

RESUMO

The present study sought to determine whether elevated plasma free fatty acids (FFAs) alter the splanchnic and muscle glucose metabolism in women. To do so, FFAs were increased in seven women by an 8-h Intralipid/heparin (IL/hep) infusion, and the results were compared with those observed in nine women who were infused with glycerol alone. Glucose was clamped at approximately 8.3 mmol/l and insulin was increased to approximately 300 pmol/l to stimulate both muscle and hepatic glucose uptake. Insulin secretion was inhibited with somatostatin. Leg and splanchnic glucose metabolism were assessed using a combined catheter and tracer dilution approach. The glucose infusion rates required to maintain target plasma glucose concentrations were lower (P < 0.01) during IL/hep than glycerol infusion (30.8 +/- 2.6 vs. 65.0 +/- 7.9 micro mol. kg(-1). min(-1)). Whole-body glucose disappearance (37.0 +/- 2.2 vs. 70.9 +/- 8.7 micro mol. kg(-1). min(-1); P < 0.001) and leg glucose uptake (24.3 +/- 4.2 vs. 59.6 +/- 10.0 micro mol. kg fat-free mass of the leg(-1). min(-1); P < 0.02) were also lower, whereas splanchnic glucose production (8.2 +/- 0.8 vs. 4.3 +/- 0.7 micro mol. kg(-1). min(-1); P < 0.01) was higher during IL/hep than glycerol infusion. We conclude that in the presence of combined hyperinsulinemia and hyperglycemia, elevated FFAs impair glucose metabolism in women by inhibiting whole- body glucose disposal, muscle glucose uptake, and suppression of splanchnic glucose production.


Assuntos
Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Músculo Esquelético/metabolismo , Vísceras/metabolismo , Adulto , Peptídeo C/sangue , Feminino , Glucose/administração & dosagem , Glucose/farmacocinética , Glucose/farmacologia , Glicerol/sangue , Hormônio do Crescimento Humano/sangue , Humanos , Hiperglicemia/complicações , Hiperinsulinismo/complicações , Perna (Membro)
3.
Diabetes ; 51(2): 301-10, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11812736

RESUMO

The present study sought to determine whether elevated plasma free fatty acids (FFAs) alter the ability of insulin and glucose to regulate splanchnic as well as muscle glucose metabolism. To do so, FFAs were increased in 10 subjects to approximately 1 mmol/l by an 8-h Intralipid/heparin (IL/Hep) infusion, whereas they fell to levels near the detection limit of the assay (<0.05 mmol/l) in 13 other subjects who were infused with glycerol alone at rates sufficient to either match (n = 5, low glycerol) or double (n = 8, high glycerol) the plasma glycerol concentrations observed during the IL/Hep infusion. Glucose was clamped at approximately 8.3 mmol/l, and insulin was increased to approximately 300 pmol/l to stimulate both muscle and hepatic glucose uptake. Insulin secretion was inhibited with somatostatin. Leg and splanchnic glucose metabolism were assessed using a combined catheter and tracer dilution approach. Leg glucose uptake (21.7 +/- 3.5 vs. 48.3 +/- 9.3 and 57.8 +/- 11.7 micromol x kg(-1) leg x min(-1)) was lower (P < 0.001) during IL/Hep than the low- or high-glycerol infusions, confirming that elevated FFAs caused insulin resistance in muscle. IL/Hep did not alter splanchnic glucose uptake or the contribution of the extracellular direct pathway to UDP-glucose flux. On the other hand, total UDP-glucose flux (13.2 +/- 1.7 and 12.5 +/- 1.0 vs. 8.1 +/- 0.5 micromol x kg(-1) x min(-1)) and flux via the indirect intracellular pathway (8.4 +/- 1.2 and 8.1 +/- 0.6 vs. 4.8 +/- 0.05 micromol x kg(-1) x min(-1)) were greater (P < 0.05) during both the IL/Hep and high-glycerol infusions than the low-glycerol infusion. In contrast, only IL/Hep increased (P < 0.05) splanchnic glucose production, indicating that elevated FFAs impaired the ability of the liver to autoregulate. Splanchnic insulin extraction, directly measured using the arterial and hepatic vein catheters, did not differ (67 +/- 3 vs. 71 +/- 5 vs. 69 +/- 1%) during IL/Hep and high- and low-glycerol infusions. We conclude that elevated FFAs exert multiple effects on glucose metabolism. They inhibit insulin- and glucose-induced stimulation of muscle glucose uptake and suppression of splanchnic glucose production. They increase the contribution of the indirect pathway to glycogen synthesis and impair hepatic autoregulation. On the other hand, they do not alter either splanchnic glucose uptake or splanchnic insulin extraction in nondiabetic humans.


Assuntos
Ácidos Graxos não Esterificados/farmacologia , Glucose/metabolismo , Glicerol/farmacologia , Insulina/metabolismo , Vísceras/metabolismo , Adulto , Glicemia/análise , Peptídeo C/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Glucose/farmacologia , Glicerol/sangue , Humanos , Insulina/sangue , Perna (Membro) , Masculino , Músculo Esquelético/metabolismo , Concentração Osmolar , Valores de Referência , Uridina Difosfato Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...