Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Psychoneuroendocrinol ; 15: 100186, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37223650

RESUMO

The COVID-19 pandemic has caused significant negative consequences to mental health. Increased inflammatory factors and neuropsychiatric symptoms, such as cognitive impairment ("brain fog"), depression, and anxiety are associated with long COVID [post-acute sequelae of SARS-CoV-2 infection (PASC), termed neuro-PASC]. The present study sought to examine the role of inflammatory factors as predictors of neuropsychiatric symptom severity in the context of COVID-19. Adults (n = 52) who tested negative or positive for COVID-19 were asked to complete self-report questionnaires and to provide blood samples for multiplex immunoassays. Participants who tested negative for COVID-19 were assessed at baseline and at a follow-up study visit (∼4 weeks later). Individuals without COVID-19 reported significantly lower PHQ-4 scores at the follow-up visit, as compared to baseline (p = 0.03; 95% CI-1.67 to -0.084). Individuals who tested positive for COVID-19 and experienced neuro-PASC had PHQ-4 scores in the moderate range. The majority of people with neuro-PASC reported experiencing brain fog (70% vs. 30%). Those with more severe COVID-19 had significantly higher PHQ-4 scores, as compared to those with mild disease (p = 0.008; 95% CI 1.32 to 7.97). Changes in neuropsychiatric symptom severity were accompanied by alterations in immune factors, particularly monokine induced by gamma interferon (IFN-γ) (MIG, a. k.a. CXCL9). These findings add to the growing evidence supporting the usefulness of circulating MIG levels as a biomarker reflecting IFN-γ production, which is important because individuals with neuro-PASC have elevated IFN-γ responses to internal SARS-CoV-2 proteins.

2.
Mol Immunol ; 152: 215-223, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379129

RESUMO

Identification of immunologic epitopes against SARS-CoV-2 is crucial for the discovery of diagnostic, therapeutic, and preventive targets. In this study, we used a pan-coronavirus peptide microarray to screen for potential B-cell epitopes and validated the results with peptide-based ELISA. Specifically, we identified three linear B-cell epitopes on the SARS-CoV-2 proteome, which were recognized by convalescent plasma from COVID-19 patients. Interestingly, two epitopes (S 809-823 and R1ab 909-923) strongly reacted to convalescent plasma collected at the early phase (< 90 days) of COVID-19 symptom onset, whereas one epitope (M 5-19) reacted to convalescent plasma collected > 90 days after COVID-19 symptom onset. Neutralization assays using antibody depletion with the identified spike (S) peptides revealed that three S epitopes (S 557-571, S 789-803, and S 809-823) elicited neutralizing antibodies in COVID-19 patients. However, the levels of virus-specific antibody targeting S 789-803 only positively correlated with the neutralizing rates at the early phase (<60 days) after disease onset, and the antibody titers diminished quickly with no correlation to the neutralizing activity beyond two months after recovery from COVID-19. Importantly, stimulation of peripheral blood mononuclear cells from COVID-19-recovered patients with these SARS-CoV-2 S peptides resulted in poor virus-specific B cell activation, proliferation, differentiation into memory B cells, and production of immunoglobulin G (IgG) antibodies, despite the B-cells being functionally competent as demonstrated by their response to non-specific stimulation. Taken together, these findings indicate that these newly identified SARS-CoV-2-specific B-cell epitopes can elicit neutralizing antibodies, with titers and/or neutralizing activities declining significantly within 2-3 months in the convalescent plasma of COVID-19 patients.


Assuntos
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Epitopos de Linfócito B , Glicoproteína da Espícula de Coronavírus , Leucócitos Mononucleares , Anticorpos Antivirais , Anticorpos Neutralizantes , Soroterapia para COVID-19
3.
Proteomics Clin Appl ; 16(5): e2200031, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929818

RESUMO

BACKGROUND: While the majority of COVID-19 patients fully recover from the infection and become asymptomatic, a significant proportion of COVID-19 survivors experience a broad spectrum of symptoms lasting weeks to months post-infection, a phenomenon termed "post-acute sequelae of COVID-19 (PASC)." The aim of this study is to determine whether inflammatory proteins are dysregulated and can serve as potential biomarkers for systemic inflammation in COVID-19 survivors. METHODS: We determined the levels of inflammatory proteins in plasma from 22 coronavirus disease 2019 (COVID-19) long haulers (COV-LH), 22 COVID-19 asymptomatic survivors (COV-AS), and 22 healthy subjects (HS) using an Olink proteomics assay and assessed the results by a beads-based multiplex immunoassay. RESULTS: Compared to HS, we found that COVID-19 survivors still exhibited systemic inflammation, as evidenced by significant changes in the levels of multiple inflammatory proteins in plasma from both COV-LH and COV-AS. CXCL10 was the only protein that significantly upregulated in COV-LH compared with COV-AS and HS. CONCLUSIONS: Our results indicate that several inflammatory proteins remain aberrantly dysregulated in COVID-19 survivors and CXCL10 might serve as a potential biomarker to typify COV-LH. Further characterization of these signature inflammatory molecules might improve the understanding of the long-term impacts of COVID-19 and provide new targets for the diagnosis and treatment of COVID-19 survivors with PASC.


Assuntos
COVID-19 , Biomarcadores , COVID-19/complicações , Humanos , Inflamação , SARS-CoV-2 , Sobreviventes
4.
Virus Res ; 304: 198508, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329696

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to public health. An explicit investigation of COVID-19 immune responses, particularly the host immunity in recovered subjects, will lay a foundation for the rational design of therapeutics and/or vaccines against future coronaviral outbreaks. Here, we examined virus-specific T cell responses and identified T cell epitopes using peptides spanning SARS-CoV-2 structural proteins. These peptides were used to stimulate peripheral blood mononuclear cells (PBMCs) derived from COVID-19-recovered subjects, followed by an analysis of IFN-γ-secreting T cells by enzyme-linked immunosorbent spot (ELISpot). We also evaluated virus-specific CD4 or CD8 T cell activation by flow cytometry assay. By screening 52 matrix pools (comprised of 315 peptides) of the spike (S) glycoprotein and 21 matrix pools (comprised of 102 peptides) spanning the nucleocapsid (N) protein, we identified 28 peptides from S protein and 5 peptides from N protein as immunodominant epitopes. The immunogenicity of these epitopes was confirmed by a second ELISpot using single peptide stimulation in memory T cells, and they were mapped by HLA restrictions. Notably, SARS-CoV-2 specific T cell responses positively correlated with B cell IgG and neutralizing antibody responses to the receptor-binding domain (RBD) of the S protein. Our results demonstrate that defined levels of SARS-CoV-2 specific T cell responses are generated in some, but not all, COVID-19-recovered subjects, fostering hope for the protection of a proportion of COVID-19-exposed individuals against reinfection. These results also suggest that these virus-specific T cell responses may induce protective immunity in unexposed individuals upon vaccination, using vaccines generated based on the immune epitopes identified in this study. However, SARS-CoV-2 S and N peptides are not potently immunogenic, and none of the single peptides could universally induce robust T cell responses, suggesting the necessity of using a multi-epitope strategy for COVID-19 vaccine design.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Pandemias , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Linfócitos T CD8-Positivos/citologia , COVID-19/epidemiologia , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adulto Jovem
5.
Sci Rep ; 11(1): 5558, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692386

RESUMO

The recent COVID-19 pandemic poses a serious threat to global public health, thus there is an urgent need to define the molecular mechanisms involved in SARS-CoV-2 spike (S) protein-mediated virus entry that is essential for preventing and/or treating this emerging infectious disease. In this study, we examined the blocking activity of human COVID-19 convalescent plasma by cell-cell fusion assays using SARS-CoV-2-S-transfected 293 T as effector cells and ACE2-expressing 293 T as target cells. We demonstrate that the SARS-CoV-2 S protein exhibits a very high capacity for membrane fusion and is efficient in mediating virus fusion and entry into target cells. Importantly, we find that COVID-19 convalescent plasma with high titers of IgG neutralizing antibodies can block cell-cell fusion and virus entry by interfering with the SARS-CoV-2-S/ACE2 or SARS-CoV-S/ACE2 interactions. These findings suggest that COVID-19 convalescent plasma may not only inhibit SARS-CoV-2-S but also cross-neutralize SARS-CoV-S-mediated membrane fusion and virus entry, supporting its potential as a preventive and/or therapeutic agent against SARS-CoV-2 as well as other SARS-CoV infections.


Assuntos
COVID-19/imunologia , COVID-19/terapia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Fusão Celular/métodos , Feminino , Humanos , Imunização Passiva/métodos , Masculino , Fusão de Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Plasma/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...