Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(19): 5760-5766, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694339

RESUMO

Phase-separated membraneless organelles or biomolecular condensates play diverse functions in cells, however recapturing their characteristics using small organic molecules has been a challenge. In the present study, cell-lysate-based screening of 843 self-assembling small molecules led to the discovery of a simple organic molecule, named huezole, that forms liquid droplets to selectively sequester tubulin. Remarkably, this small molecule enters cultured human cells and prevents cell mitosis by forming tubulin-concentrating condensates in cells. The present study demonstrates the feasibility of producing a synthetic condensate out of non-peptidic small molecules for exogenous control of cellular processes. The modular structure of huezole provides a framework for designing a class of organelle-emulating small molecules.

2.
ACS Chem Biol ; 17(3): 567-575, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35188733

RESUMO

The present study reports a surprising protein-condensing effect of glucose, prompted by our accidental observation during chemical library screening under a high-glucose condition. We noticed "glucosing-out" of certain compounds, in which physiological concentrations of glucose induced compound aggregation. Adapting the "glucosing-out" concept to proteins, our proteomic analysis identified three cellular proteins (calmodulin, rho guanine nucleotide exchange factor 40, and polyubiquitin-C) that displayed robust glucose-dependent precipitation. One of these proteins, calmodulin, formed glucose-dependent condensates that control cellular glycogenolysis in hepatic cells. Our findings suggest that glucose is a heretofore underappreciated driver of protein phase separation that may have profound effects on cellular homeostasis.


Assuntos
Glucose , Glicogenólise , Calmodulina/metabolismo , Glucose/metabolismo , Homeostase , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...