Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
J Hum Evol ; 180: 103385, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37229946

RESUMO

During the middle Pliocene (∼3.8-3.2 Ma), both Australopithecus afarensis and Kenyanthropus platyops are known from the Turkana Basin, but between 3.60 and 3.44 Ma, most hominin fossils are found on the west side of Lake Turkana. Here, we describe a new hominin locality (ET03-166/168, Area 129) from the east side of the lake, in the Lokochot Member of the Koobi Fora Formation (3.60-3.44 Ma). To reconstruct the paleoecology of the locality and its surroundings, we combine information from sedimentology, the relative abundance of associated mammalian fauna, phytoliths, and stable isotopes from plant wax biomarkers, pedogenic carbonates, and fossil tooth enamel. The combined evidence provides a detailed view of the local paleoenvironment occupied by these Pliocene hominins, where a biodiverse community of primates, including hominins, and other mammals inhabited humid, grassy woodlands in a fluvial floodplain setting. Between <3.596 and 3.44 Ma, increases in woody vegetation were, at times, associated with increases in arid-adapted grasses. This suggests that Pliocene vegetation included woody species that were resilient to periods of prolonged aridity, resembling vegetation structure in the Turkana Basin today, where arid-adapted woody plants are a significant component of the ecosystem. Pedogenic carbonates indicate more woody vegetation than other vegetation proxies, possibly due to differences in temporospatial scale and ecological biases in preservation that should be accounted for in future studies. These new hominin fossils and associated multiproxy paleoenvironmental indicators from a single locale through time suggest that early hominin species occupied a wide range of habitats, possibly including wetlands within semiarid landscapes. Local-scale paleoecological evidence from East Turkana supports regional evidence that middle Pliocene eastern Africa may have experienced large-scale, climate-driven periods of aridity. This information extends our understanding of hominin environments beyond the limits of simple wooded, grassy, or mosaic environmental descriptions.


Assuntos
Hominidae , Animais , Ecossistema , Fósseis , Biodiversidade , Plantas , Mamíferos , Poaceae , Carbonatos , Evolução Biológica , Quênia
2.
Tectonics ; 37(8): 2486-2512, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30333679

RESUMO

SE Asia comprises a heterogeneous assemblage of fragments derived from Cathaysia (Eurasia) in the north and Gondwana in the south, separated by suture zones representing closed former ocean basins. The western part of the region comprises Sundaland, which was formed by Late Permian-Triassic amalgamation of continental and arc fragments now found in Indochina, the Thai Penisula, Peninsular Malaysia, and Sumatra. On Borneo, the Kuching Zone formed the eastern margin of Sundaland since the Triassic. To the SE of the Kuching Zone, the Gondwana-derived continental fragments of SW Borneo and East Kalimantan accreted in the Cretaceous. South China-derived fragments accreted to north of the Kuching Zone in the Miocene. Deciphering this complex geodynamic history of SE Asia requires restoration of its deformation history, but quantitative constraints are often sparse. Paleomagnetism may provide such constraints. Previous paleomagnetic studies demonstrated that Sundaland and fragments in Borneo underwent vertical axis rotations since the Cretaceous. We provide new paleomagnetic data from Eocene-Miocene sedimentary rocks in the Kutai Basin, east Borneo, and critically reevaluate the published database, omitting sites that do not pass widely used, up-to-date reliability criteria. We use the resulting database to develop an updated kinematic restoration. We test the regional or local nature of paleomagnetic rotations against fits between the restored orientation of the Sunda Trench and seismic tomography images of the associated slabs. Paleomagnetic data and mantle tomography of the Sunda slab indicate that Sundaland did not experience significant vertical axis rotations since the Late Jurassic. Paleomagnetic data show that Borneo underwent a ~35° counterclockwise rotation constrained to the Late Eocene and an additional ~10° counterclockwise rotation since the Early Miocene. How this rotation was accommodated relative to Sundaland is enigmatic but likely involved distributed extension in the West Java Sea between Borneo and Sumatra. This Late Eocene-Early Oligocene rotation is contemporaneous with and may have been driven by a marked change in motion of Australia relative to Eurasia, from eastward to northward, which also has led to the initiation of subduction along the eastern Sunda trench and the proto-South China Sea to the south and north of Borneo, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...