Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1304810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601091

RESUMO

The vestibular system plays an important role in maintaining balance and posture. It also contributes to vertical perception, body awareness and spatial navigation. In addition to its sensory function, the vestibular system has direct connections to key areas responsible for higher cognitive functions, such as the prefrontal cortex, insula and hippocampus. Several studies have reported that vestibular dysfunction, in particular bilateral vestibulopathy, is associated with an increased risk of cognitive impairment and the development of dementias such as Alzheimer's disease. However, it is still controversial whether there is a causal relationship between vestibular damage and cognitive dysfunction. In this mini-review, we will explore the relationship between the vestibular system, cognitive dysfunction and dementia, hypotheses about the hypothesis and causes that may explain this phenomenon and also some potential confounders that may also lead to cognitive impairment. We will also review multimodal neuroimaging approaches that have investigated structural and functional effects on the cortico-vestibular network and finally, describe some approaches to the management of patients with vestibular damage who have shown some cognitive impairment.

2.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241174

RESUMO

A fundamental property of sensory systems is their ability to detect novel stimuli in the ambient environment. The auditory brain contains neurons that decrease their response to repetitive sounds but increase their firing rate to novel or deviant stimuli; the difference between both responses is known as stimulus-specific adaptation or neuronal mismatch (nMM). Here, we tested the effect of microiontophoretic applications of ACh on the neuronal responses in the auditory cortex (AC) of anesthetized rats during an auditory oddball paradigm, including cascade controls. Results indicate that ACh modulates the nMM, affecting prediction error responses but not repetition suppression, and this effect is manifested predominantly in infragranular cortical layers. The differential effect of ACh on responses to standards, relative to deviants (in terms of averages and variances), was consistent with the representational sharpening that accompanies an increase in the precision of prediction errors. These findings suggest that ACh plays an important role in modulating prediction error signaling in the AC and gating the access of these signals to higher cognitive levels.


Assuntos
Córtex Auditivo , Ratos , Animais , Córtex Auditivo/fisiologia , Acetilcolina/farmacologia , Neurônios/fisiologia , Som , Estimulação Acústica , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia
3.
Audiol Neurootol ; 29(2): 81-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37703853

RESUMO

BACKGROUND: The current pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality primarily associated with respiratory failure. However, it has also been reported that COVID-19 can evolve into a nervous system infection. The direct and indirect mechanisms of damage associated with SARS-CoV-2 neuropathogenesis could affect our sensory functionality, including hearing and balance. SUMMARY: In order to investigate a possible association between SARS-CoV-2 viral infection and possible damage to the vestibular system, this review describes the main findings related to diagnosing and evaluating otoneurological pathologies. KEY MESSAGES: The clinical evidence shows that SARS-CoV-2 causes acute damage to the vestibular system that would not leave significant sequelae. Recovery is similar to vestibular pathologies such as vestibular neuronitis and benign paroxysmal positional vertigo. Further basic science, clinical, and translational research is needed to verify and understand the short- and long-term effects of COVID-19 on vestibular function.


Assuntos
COVID-19 , Neuronite Vestibular , Vestíbulo do Labirinto , Humanos , SARS-CoV-2 , Neuronite Vestibular/diagnóstico , Vertigem Posicional Paroxística Benigna/diagnóstico
4.
J Otol ; 18(3): 111-117, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37497327

RESUMO

Objective: Contribute to clarifying the existence of subclinical hearing deficits associated with aging. Design: In this work, we study and compare the auditory perceptual and electrophysiological performance of normal-hearing young and adult subjects (tonal audiometry, high-frequency tone threshold, a triplet of digits in noise, and click-evoked auditory brainstem response). Study sample: 45 normal hearing volunteers were evaluated and divided into two groups according to age. 27 subjects were included in the "young group" (mean 22.1 years), and 18 subjects (mean 42.22 years) were included in the "adult group." Results: In the perceptual tests, the adult group presented significantly worse tonal thresholds in the high frequencies (12 and 16 kHz) and worse performance in the digit triplet tests in noise. In the electrophysiological test using the auditory brainstem response technique, the adult group presented significantly lower I and V wave amplitudes and higher V wave latencies at the supra-threshold level. At the threshold level, we observed a significantly higher latency in wave V in the adult group. In addition, in the partial correlation analysis, controlling for the hearing level, we observed a relationship (negative) between age and speech in noise performance and high-frequency thresholds. No significant association was observed between age and the auditory brainstem response. Conclusion: The results are compatible with subclinical hearing loss associated with aging.

5.
Rev. otorrinolaringol. cir. cabeza cuello ; 83(2): 185-197, jun. 2023. ilus
Artigo em Espanhol | LILACS | ID: biblio-1515479

RESUMO

Una propiedad fundamental de los sistemas sensoriales es su capacidad para detectar estímulos novedosos en el entorno. El sistema nervioso posee neuronas que disminuyen su respuesta a los estímulos sonoros que se repiten a lo largo del tiempo y otras neuronas que aumentan su frecuencia de disparo ante estímulos novedosos, siendo la diferencia entre ambas respuestas conocida como adaptación-específica a estímulos. En las últimas décadas, se ha propuesto que el cerebro establece, continuamente, predicciones de los estímulos novedosos y del entorno basándose en sus experiencias previas y en modelos de representación internos, teoría denominada codificación predictiva. En esta revisión, abordaremos algunos conceptos de la adaptación-específica a estímulos y codificación predictiva, centrándonos principalmente en el sistema auditivo. Por último, propondremos una explicación teórica basada en el marco de la codificación predictiva para algunas disfunciones neuropsiquiátricas, auditivas y vestibulares.


A fundamental property of sensory systems is their ability to detect novel stimuli in the environment. The nervous system possesses neurons that decrease their response to sound stimuli that are repeated over time and other neurons that increase their firing rate to novel stimuli, the difference between the two responses being known as stimulus-specific adaptation. In recent decades, it has been proposed that the brain continuously makes predictions of novel stimuli and the environment based on its previous experiences and internal representational models, a theory called predictive coding. In this review, we will address some concepts of stimulus-specific adaptation and predictive coding, focusing mainly on the auditory system. Finally, we will propose a theoretical explanation based on the predictive coding framework for some neuropsychiatric, auditory, and vestibular dysfunctions.


Assuntos
Humanos , Percepção Auditiva/fisiologia , Potenciais Evocados/fisiologia , Atenção/fisiologia , Eletroencefalografia/métodos
6.
Hear Res ; 399: 107997, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482383

RESUMO

Auditory deviance detection is a function of the auditory system that allows reduction of the processing demand for repetitive stimuli while stressing unpredictable ones, which are potentially more informative. Deviance detection has been extensively studied in humans using the oddball paradigm, which evokes an event-related potential known as mismatch negativity (MMN). The same stimulation paradigms are used in animal studies that aim to elucidate the neuronal mechanisms underlying deviance detection. In order to understand the circuitry responsible for deviance detection in the auditory cortex (AC), it is necessary to determine the properties of excitatory and inhibitory neurons separately. Measuring the spike widths of neurons recorded extracellularly from the anaesthetized rat AC, we classified them as fast spiking or regular spiking units. These two neuron types are generally considered as putative inhibitory or excitatory, respectively. In response to an oddball paradigm, we found that both types of units showed similar amounts of deviance detection overall. When considering each AC field separately, we found that only in A1 fast spiking neurons showed higher deviance detection levels than regular spiking neurons, while in the rest of the fields there was no such distinction. Interpreting these responses in the context of the predictive coding framework, we found that the responses of both types of units reflect mainly prediction error signaling (i.e., genuine deviance detection) rather than repetition suppression.


Assuntos
Córtex Auditivo , Estimulação Acústica , Animais , Eletroencefalografia , Potenciais Evocados Auditivos , Ratos , Tempo de Reação
8.
Rev. otorrinolaringol. cir. cabeza cuello ; 76(3): 337-346, dic. 2016. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-845636

RESUMO

El sistema vestibular, mediante sus órganos periféricos, nos permite procesar correctamente los cambios de aceleración angular de la cabeza y lineal del cuerpo y así permitirnos una correcta orientación en el espacio. Esta información sensorial es dirigida hacia los núcleos vestibulares y desde aquí se comunica con los núcleos óculo-motores y estructuras del tálamo a través de tractos ascendentes del tronco encefálico. Posteriormente la información se dirige hacia centros subcorticales y corticales de naturaleza eminentemente multisensorial. La naturaleza y función de estas estructuras es controversial. En esta revisión se abordan los principales conceptos y descubrimientos a nivel de investigación básica y clínica del procesamiento cortical generado por estimulación de tipo vestibular.


The vestibular system, thanks to its peripheral organs, allows us to properly process the angular head movements and linear acceleration in order to give us a proper orientation in space. The information from these sensory inputs is routed to the vestibular nuclei and thence ascending tracts of the brainstem, which communicate with the oculomotor nuclei of the thalamus and structures. Then the information goes to subcortical and cortical centers, which are eminently multisensory nature. The nature and function of these structures are controversial. In this review the main concepts and discoveries at the level of basic and clinical research generated cortical processing of vestibular stimulation are addressed.


Assuntos
Humanos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Nervo Vestibular/anatomia & histologia , Nervo Vestibular/fisiologia
9.
Rev. otorrinolaringol. cir. cabeza cuello ; 73(3): 271-275, dic. 2013.
Artigo em Espanhol | LILACS | ID: lil-704557

RESUMO

La lesión o hipofunción vestibular bilateral (HVB) es un cuadro clínico que provoca oscilopsias y desequilibrio incapacitante que se agrava en oscuridad. Algunas de las causas de HVB son el uso de drogas ototóxicas, enfermedad de Ménière bilateral, enfermedades autoinmunes y degeneración espinocerebelar. El manejo de esta discapacidad es complejo y muchas veces la rehabilitación no logra los objetivos deseados. Una de las alternativas terapéuticas futuras para la HVB y aún en plena fase experimental es el implante vestibular, cuyo funcionamiento en términos generales es similar al de un implante coclear. En esta revisión se analiza la génesis e historia del desarrollo de los implantes vestibulares, sus principales características y el futuro de su implementación.


Bilateral vestibular loss (BVL) is a clinic syndrome that produces oscillopsias and disabling disequilibrium, especially in darkness. Some causes of BVL are the use of ototoxic drugs, bilateral Ménière disease, autoinmune ear disorders and spinocerebellar ataxia. The management of this disability is complex and many times the rehabilitation does not accomplish with the desired goals. One future therapeutic alternative for BVL and still in an experimental stage is the vestibular implant, whose overall functioning is similar to a cochlear implant. In this review we analyze the genesis and history of vestibular implant development, its main technical characteristics and the future of its implementation.


Assuntos
Humanos , Próteses e Implantes , Doenças Vestibulares/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...