Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 150: 113003, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462340

RESUMO

Mali-Nil Surin rice bran hydrolysate (MRH) contains highly nutritional proteins and beneficial phenolic compounds. This study investigated an antihypertensive effect of MRH and evaluated the mechanisms mediating this action in Nω-nitro-L-arginine-methyl ester (L-NAME)-induced hypertensive rats. Antihypertensive activity was determined in male rats orally administered with MRH (100 or 300 mg/kg) or enalapril (15 mg/kg) daily together with L-NAME (50 mg/kg/day) in drinking water, for 21 days. Concurrent oral treatment with MRH lowered the high blood pressure in the L-NAME-induced hypertensive rats. MRH treatment improved endothelial function and increased the endothelium-derived hyperpolarizing factor-mediated vasorelaxation in L-NAME hypertensive rats. L-NAME rats treated with MRH had reduced adrenergic hypercontractility, which was associated with a decrease in L-type calcium channel-mediated vasoconstriction. In addition, MRH exhibited antioxidant activity in hypertensive rats, as indicated by suppression of vascular superoxide anion production and reduction of malondialdehyde levels, as well as magnification of superoxide dismutase and catalase activities in serum. This study demonstrated the nutraceutical potential of MRH to prevent oxidative stress-related vascular dysfunction in hypertension.


Assuntos
Hipertensão , Oryza , Animais , Anti-Hipertensivos/efeitos adversos , Antioxidantes/farmacologia , Fatores Biológicos , Pressão Sanguínea , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Mali , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Ratos , Tailândia , Vasoconstrição , Vasodilatação
2.
Biomed Pharmacother ; 130: 110605, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32781358

RESUMO

A mass of evidence has identified a promoting of nitric oxide (NO) production in endothelial cells using natural products as a potential strategy to prevent and treat hypertension. This study investigated whether the aqueous extract of Moringa oleifera leaves (MOE) could lower mean arterial pressure (MAP) and relax mesenteric arterial beds in rats via stimulating endothelium-derived NO production. Intravenous administration of MOE (1-30 mg/kg) caused a dose-dependent reduction in MAP in anesthetized rats. In rats pretreated with the NO-synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg, i.v.), the effect of MOE on MAP was significantly reduced. MOE (0.001-3 mg) induced relaxation in methoxamine (10 µM) pre-contracted mesenteric arterial beds, which was abolished by endothelium denudation. This endothelium-dependent vasorelaxation was reduced by L-NAME (100 µM) or the NO-sensitive guanylyl cyclase inhibitor, 1H- [1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (10 µM). In primary human pulmonary artery endothelial cells, MOE (3-30 µg/mL) induced NO production, which was inhibited by L-NAME (100 µM) pretreatment. These findings show that MOE stimulates the endothelium-derived NO release for driving its vasorelaxation to lower arterial blood pressure. These suggest the development of MOE as a natural antihypertensive supplement.


Assuntos
Pressão Arterial/efeitos dos fármacos , Artérias/efeitos dos fármacos , Moringa oleifera/química , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Extratos Vegetais/farmacologia , Resistência Vascular/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Relaxamento Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Ratos , Ratos Wistar , Guanilil Ciclase Solúvel/antagonistas & inibidores , Circulação Esplâncnica/efeitos dos fármacos
3.
Clin Exp Hypertens ; 42(6): 490-501, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31965874

RESUMO

BACKGROUND: An aqueous extract of Moringa oleifera leaves (MOE) is known to cause relaxation of mesenteric resistance arteries of rats in which hypertension has been induced by the administration of L-NAME, but the mechanism(s) of action of MOE remains unclear. The purpose of this study was to investigate these mechanisms in mesenteric arterial beds isolated from L-NAME induced hypertensive rats. Methods: An investigation of vascular reactivity was conducted on isolated mesenteric arterial beds by measuring the changes in perfusion pressure using an in vitro system. RESULTS: MOE (0.001-3 mg in 0.1 ml injection volume) caused a dose-dependent relaxation in methoxamine (5 µM) pre-contracted arterial beds, which was partially abolished by endothelium removal. The endothelium-dependent component of vasorelaxation was insensitive to both L-NAME (100 µM) and indomethacin (10 µM), while completely inhibited in high KCl (45 mM)-induced contraction. MOE (1 and 3 mg/ml) showed a dose-dependent inhibitory effect on CaCl2-induced contractions of denuded preparations in Ca2+-free medium containing a high KCl (60 mM) or methoxamine (10 µM). In Ca2+-free medium, MOE (3 mg/ml) also inhibited phenylephrine-induced contractions of denuded preparations. Conclusion: These findings suggest that MOE relaxes mesenteric arterial beds of L-NAME hypertensive rats via both endothelium-dependent and endothelium-independent mechanisms. The endothelium-dependent action occurred via endothelium-derived hyperpolarizing factor-mediated hyperpolarization. The endothelium-independent action was related to blocking the entry of extracellular Ca2+ via voltage-operated and receptor-operated Ca2+ channels, and inhibiting mobilization of sarcolemmal Ca2+ via inositol trisphosphate receptor Ca2+ channels. MOE may be potentially useful as a natural vasodilator against hypertension.


Assuntos
Bloqueadores dos Canais de Cálcio , Endotélio Vascular , Hipertensão , Artérias Mesentéricas , Moringa oleifera , Fitoterapia/métodos , Extratos Vegetais , Vasodilatação/efeitos dos fármacos , Animais , Fatores Biológicos/metabolismo , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/farmacocinética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Ratos , Resultado do Tratamento , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacocinética
4.
J Complement Integr Med ; 18(2): 287-293, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34187128

RESUMO

OBJECTIVES: Aqueous extract of Moringa oleifera leaves (MOE) is a potent inducer of endothelium-dependent relaxation of mesenteric resistance arteries of rats induced to be hypertensive using Nω-nitro-L-arginine methyl ester (L-NAME). Hydrogen sulfide (H2S) has been shown to participate in endothelium-dependent relaxation of small resistance arteries. Therefore, this study aimed to investigate whether endothelial H2S-dependent signaling plays a role in the vasorelaxation in response to MOE. METHODS: Mesenteric arterial beds isolated from L-NAME hypertensive rats were set up in an ex vivo perfusion system for measurement of vasoreactivity. All experiments were performed in the presence of the nitric oxide synthase inhibitor, L-NAME (100 µM) and the cyclooxygenase inhibitor, indomethacin (10 µM) to prevent the formation of nitric oxide and prostanoids, respectively. RESULTS: In the presence of the nitric oxide synthase inhibitor, L-NAME and the cyclooxygenase inhibitor, indomethacin, the endothelium-dependent vasorelaxation induced by MOE (0.001-3 mg) was completely inhibited by DL-propargylglycine (100 µM), which inhibits the H2Sgenerating enzyme, cystathionine γ-lyase. This H2Sdependent response was reduced by the KATP channel blocker; glibenclamide (10 µM), the KCa channel blocker; tetraethylammonium (1 µM), and the myo-endothelial gap-junctional uncoupler; 18α-glycyrrhetinic acid (10 µM). In contrast, the muscarinic receptor antagonist, atropine (100 µM), did not affect the response to MOE. CONCLUSIONS: The results may suggest that H2S is the likely mediator of endothelium-dependent relaxation in response to MOE in mesenteric arterial beds of L-NAME-induced hypertensive rats. MOE-induced H2S-dependent vasorelaxation involves activation of KATP and KCa channels and requires myo-endothelial gap-junctional communication.


Assuntos
Sulfeto de Hidrogênio , Moringa oleifera , Animais , Endotélio , Endotélio Vascular , Artérias Mesentéricas , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Vasodilatação
5.
Phytomedicine ; 54: 9-16, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668387

RESUMO

BACKGROUND: Enhancing relaxation of resistance arteries and decreasing oxidative stress by using natural products are potential strategies for prevention and treatment of hypertension. PURPOSE: This study investigated whether aqueous extract of Moringa oleifera leaves (MOE) could alleviate Nω-nitro-L-arginine-methyl ester (L-NAME)-induced high blood pressure via modulation of vascular function and antioxidant properties. METHODS: An experimental hypertensive model was established by administration of L-NAME (50 mg/kg/day) in drinking water to male Wistar rats for 3 weeks. Arterial pressure was measured indirectly by tail-cuff plethysmography and directly via femoral artery catheterization. Vasoreactivity of isolated rat mesenteric arterial bed was determined by the changes in perfusion pressure detected by a pressure transducer. Vascular superoxide anion (O2•-) production was determined by lucigenin-enhanced chemiluminescence. Other biochemical measurements including malondialdehyde (MDA) level, superoxide dismutase (SOD), and catalase (CAT) activities were measured by colorimetric assay. RESULTS: L-NAME-treated rats developed significantly increased blood pressure and heart rate. Concurrent oral treatment with MOE (30 and 60 mg/kg/day) could decrease the high blood pressure and tachycardia in a dose-dependent manner. MOE reduced the impairment of acetylcholine-induced relaxation and decreased the hyperreactivity of adrenergic-mediated contraction in response to periarterial nerve stimulation and phenylephrine in isolated mesenteric arterial beds. In addition, MOE exhibited antioxidant effects in the hypertensive rats, as indicated by suppression of vascular O2•- production, decrease of plasma and thoracic aorta MDA levels, and increase of antioxidant activities of SOD and CAT. Moreover, MOE (0.001-0.3 mg) produced a dose-dependent relaxation in methoxamine pre-contracted arterial beds isolated from L-NAME hypertensive rats, which was abolished by endothelium denudation. CONCLUSION: These findings suggest that the antihypertensive effect of MOE in L-NAME-hypertensive rats may be mediated by alleviating vascular dysfunction and oxidative stress and promoting endothelium-dependent vasorelaxation. MOE may be potentially useful as a natural product against hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Moringa oleifera/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Acetilcolina/farmacologia , Animais , Anti-Hipertensivos/química , Catalase/metabolismo , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Masculino , Malondialdeído/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , NG-Nitroarginina Metil Éster/efeitos adversos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos Wistar , Superóxido Dismutase/metabolismo , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...