Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22878, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819556

RESUMO

We present a compact, fibre-coupled single photon source using gradient-index (GRIN) lenses and an InAsP semiconductor quantum dot embedded within an InP photonic nanowire waveguide. A GRIN lens assembly is used to collect photons close to the tip of the nanowire, coupling the light immediately into a single mode optical fibre. The system provides a stable, high brightness source of fibre-coupled single photons. Using pulsed excitation, we demonstrate on-demand operation with a single photon purity of 98.5% when exciting at saturation in a device with a source-fibre collection efficiency of 35% and an overall single photon collection efficiency of 10%. We also demonstrate "plug and play" operation using room temperature photoluminescence from the InP nanowire for room temperature alignment.

2.
Nano Lett ; 20(5): 3688-3693, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32272017

RESUMO

Photonics-based quantum information technologies require efficient, high emission rate sources of single photons. Position-controlled quantum dots embedded within a broadband nanowire waveguide provide a fully scalable route to fabricating highly efficient single-photon sources. However, emission rates for single-photon devices are limited by radiative recombination lifetimes. Here, we demonstrate a multiplexed single-photon source based on a multidot nanowire. Using epitaxially grown nanowires, we incorporate multiple energy-tuned dots, each optimally positioned within the nanowire waveguide, providing single photons with high efficiency. This linear scaling of the single-photon emission rate with number of emitters is demonstrated using a five-dot nanowire with an average multiphoton emission probability of <4% when excited at saturation. This represents the first ever demonstration of multiple single-photon emitters deterministically incorporated in a single photonic device and is a major step toward achieving GHz single-photon emission rates from a scalable multi-quantum-dot system.

3.
Opt Express ; 18(19): 20251-62, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940916

RESUMO

We report on the experimental demonstration and analysis of a new waveguide principle using subwavelength gratings. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Subwavelength grating waveguides in silicon-on-insulator are fabricated with a single etch step and allow for flexible control of the effective refractive index of the waveguide core simply by lithographic patterning. Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguides with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides. The measured group index is nearly constant n(g) ~1.5 over a wavelength range exceeding the telecom C-band.


Assuntos
Refratometria/instrumentação , Silício/química , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Nanotechnology ; 20(39): 395602, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19724116

RESUMO

A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO(2) mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO(2) mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...