Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(Suppl 1): 742, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255480

RESUMO

The waters adjacent to the northeastern coast of Sakhalin Island, Russia, are an important feeding ground for the endangered western gray whale. Data on the energy available to foraging whales from their prey resources is required for researchers interested in modeling the bioenergetics of whale foraging, but little energy content information is available for the benthic prey communities of gray whales in this region. In this study, we describe the energy density (ED), biomass, and total energy availability (ED × biomass) of benthic prey sampled from two gray whale foraging areas adjacent to Sakhalin Island: the nearshore and offshore feeding areas. ED varied almost seven-fold among benthic taxa, ranging from 1.11 to 7.62 kJ/g wet mass. Although there was considerable variation within most prey groups, amphipods had the highest mean ED of all of groups examined (5.58 ± 1.44 kJ/g wet mass). Small sample sizes precluded us from detecting any seasonal or spatial differences in mean ED within or among taxa; however, mean biomass in the offshore feeding area was, in some cases, an order of magnitude higher than mean estimates in the nearshore feeding area, resulting in higher mean total energy available to foraging gray whales offshore (958-3313 kJ/m2) compared to nearshore (223-495 kJ/m2). While the proportion of total energy accounted for by amphipods was variable, this prey group generally made up a higher proportion of the total energy available in the benthos of the offshore feeding area than in the benthos of the nearshore feeding area. Data presented here will be used to inform bioenergetics modeling of the vital rates of mature females in an effort to improve understanding of population growth limits for western gray whales.


Assuntos
Anfípodes , Baleias , Animais , Feminino , Monitoramento Ambiental , Biomassa , Coleta de Dados
2.
Environ Monit Assess ; 194(Suppl 1): 746, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255494

RESUMO

In 2015, two oil and gas companies conducted seismic surveys along the northeast coast of Sakhalin Island, Russia, near western gray whale (Eschrichtius robustus) feeding areas. This population of whales was listed as Critically Endangered at the time of the operations described here but has been reclassified as Endangered since 2018. The number and duration of the 2015 seismic surveys surpassed the level of previous seismic survey activity in this area, elevating concerns regarding disturbance of feeding gray whales and the potential for auditory injury. Exxon Neftegas Limited (ENL) developed a mitigation approach to address these concerns and, more importantly, implemented a comprehensive data collection strategy to assess the effectiveness of this approach. The mitigation approach prioritized completion of the seismic surveys closest to the nearshore feeding area as early in the season as possible, when fewer gray whales would be present. This was accomplished by increasing operational efficiency through the use of multiple seismic vessels and by establishing zones with specific seasonal criteria determining when air gun shutdowns would be implemented. These zones and seasonal criteria were based on pre-season modeled acoustic footprints of the air gun array and on gray whale distribution data collected over the previous 10 years. Real-time acoustic and whale sighting data were instrumental in the implementation of air gun shutdowns. The mitigation effectiveness of these shutdowns was assessed through analyzing short-term behavioral responses and shifts in gray whale distribution due to sound exposure. The overall mitigation strategy of an early survey completion was assessed through bioenergetics models that predict how reduced foraging activity might affect gray whale reproduction and maternal survival. This assessment relied on a total of 17 shore-based and 5 vessel-based teams collecting behavior, distribution, photo-identification, prey, and acoustic data. This paper describes the mitigation approach, the implementation of mitigation measures using real-time acoustic and gray whale location data, and the strategy to assess impacts and mitigation effectiveness.


Assuntos
Monitoramento Ambiental , Baleias , Animais , Baleias/fisiologia , Acústica , Inquéritos e Questionários , Estações do Ano
3.
Environ Monit Assess ; 194(Suppl 1): 739, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255495

RESUMO

Oil and gas development off northeastern Sakhalin Island, Russia, has exposed the western gray whale population on their summer-fall foraging grounds to a range of anthropogenic activities, such as pile driving, dredging, pipeline installation, and seismic surveys. In 2015, the number of seismic surveys within a feeding season surpassed the level of the number and duration of previous seismic survey activities known to have occurred close to the gray whales' feeding ground, with the potential to cause disturbance to their feeding activity. To examine the extent that gray whales were potentially avoiding areas when exposed to seismic and vessel sounds, shore-based teams monitored the abundance and distribution of gray whales from 13 stations that encompassed the known nearshore feeding area. Gray whale density was examined in relation to natural (spatial, temporal, and prey energy) and anthropogenic (cumulative sound exposure from vessel and seismic sounds) explanatory variables using Generalized Additive Models (GAM). Distance from shore, water depth, date, and northing explained a significant amount of variation in gray whale densities. Prey energy from crustaceans, specifically amphipods, isopods, and cumaceans also significantly influenced gray whale densities in the nearshore feeding area. Increasing cumulative exposure to vessel and seismic sounds resulted in both a short- and longer-term decline in gray whale density in an area. This study provides further insights about western gray whale responses to anthropogenic activity in proximity to and within the nearshore feeding area. As the frequency of seismic surveys and other non-oil and gas anthropogenic activity are expected to increase off Sakhalin Island, it is critical to continue to monitor and assess potential impacts on this endangered population of gray whales.


Assuntos
Monitoramento Ambiental , Baleias , Animais , Baleias/fisiologia , Estações do Ano , Coleta de Dados , Água
4.
Ecol Appl ; 31(8): e02440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374143

RESUMO

Acoustic disturbance is a growing conservation concern for wildlife populations because it can elicit physiological and behavioral responses that can have cascading impacts on population dynamics. State-dependent behavioral and life history models implemented via Stochastic Dynamic Programming (SDP) provide a natural framework for quantifying biologically meaningful population changes resulting from disturbance by linking environment, physiology, and metrics of fitness. We developed an SDP model using the endangered western gray whale (Eschrichtius robustus) as a case study because they experience acoustic disturbance on their summer foraging grounds. We modeled the behavior and physiological dynamics of pregnant females as they arrived on the feeding grounds and predicted the probability of female and offspring survival, with and without acoustic disturbance and in the presence/absence of high prey availability. Upon arrival in mid-May, pregnant females initially exhibited relatively random behavior before they transitioned to intensive feeding that resulted in continual fat mass gain until departure. This shift in behavior co-occurred with a change in spatial distribution; early in the season, whales were more equally distributed among foraging areas with moderate to high energy availability, whereas by mid-July whales transitioned to predominate use of the location that had the highest energy availability. Exclusion from energy-rich offshore areas led to reproductive failure and in extreme cases, mortality of adult females that had lasting impacts on population dynamics. Simulated disturbances in nearshore foraging areas had little to no impact on female survival or reproductive success at the population level. At the individual level, the impact of disturbance was unequally distributed across females of different lengths, both with respect to the number of times an individual was disturbed and the impact of disturbance on vital rates. Our results highlight the susceptibility of large capital breeders to reductions in prey availability, and indicate that who, where, and when individuals are disturbed are likely to be important considerations when assessing the impacts of acoustic activities. This model provides a framework to inform planned acoustic disturbances and assess the effectiveness of mitigation strategies for large capital breeders.


Assuntos
Comportamento Alimentar , Baleias , Acústica , Animais , Feminino , Gravidez , Reprodução , Estações do Ano , Baleias/fisiologia
5.
Adv Exp Med Biol ; 875: 9-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26610939

RESUMO

Before operating air guns in Alaska, industry is usually required to model underwater sound isopleths, some of which have implications for the mitigation and monitoring of potential marine mammal impacts. Field measurements are often required to confirm or revise model predictions. We compared modeled and measured air gun sound isopleths from 2006 to 2012 and found poor agreement. Natural variability in the marine environment, application of precautionary correction factors, and data interpretation in the generation of circular isopleths all contributed to the observed poor agreement. A broader understanding of the realities of modeled and measured underwater sound isopleths will contribute to improved mitigation practices.


Assuntos
Organismos Aquáticos/fisiologia , Mamíferos/fisiologia , Modelos Teóricos , Som , Água , Alaska , Animais , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...