Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613220

RESUMO

ß-Propellers arise through the amplification of a supersecondary structure element called a blade. This process produces toroids of between four and twelve repeats, which are almost always arranged sequentially in a single polypeptide chain. We found that new propellers evolve continuously by amplification from single blades. We therefore investigated whether such nascent propellers can fold as homo-oligomers before they have been fully amplified within a single chain. One- to six-bladed building blocks derived from two seven-bladed WD40 propellers yielded stable homo-oligomers with six to nine blades, depending on the size of the building block. High-resolution structures for tetramers of two blades, trimers of three blades, and dimers of four and five blades, respectively, show structurally diverse propellers and include a novel fold, highlighting the inherent flexibility of the WD40 blade. Our data support the hypothesis that subdomain-sized fragments can provide structural versatility in the evolution of new proteins.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Conformação Proteica , Multimerização Proteica
2.
Mol Biol Cell ; 24(19): 3069-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23904265

RESUMO

mRNAs encoding secreted/membrane proteins (mSMPs) are believed to reach the endoplasmic reticulum (ER) in a translation-dependent manner to confer protein translocation. Evidence exists, however, for translation- and signal recognition particle (SRP)-independent mRNA localization to the ER, suggesting that there are alternate paths for RNA delivery. We localized endogenously expressed mSMPs in yeast using an aptamer-based RNA-tagging procedure and fluorescence microscopy. Unlike mRNAs encoding polarity and secretion factors that colocalize with cortical ER at the bud tip, mSMPs and mRNAs encoding soluble, nonsecreted, nonpolarized proteins localized mainly to ER peripheral to the nucleus (nER). Synthetic nontranslatable uracil-rich mRNAs were also demonstrated to colocalize with nER in yeast. This mRNA-ER association was verified by subcellular fractionation and reverse transcription-PCR, single-molecule fluorescence in situ hybridization, and was not inhibited upon SRP inactivation. To better understand mSMP targeting, we examined aptamer-tagged USE1, which encodes a tail-anchored membrane protein, and SUC2, which encodes a soluble secreted enzyme. USE1 and SUC2 mRNA targeting was not abolished by the inhibition of translation or removal of elements involved in translational control. Overall we show that mSMP targeting to the ER is both translation- and SRP-independent, and regulated by cis elements contained within the message and trans-acting RNA-binding proteins (e.g., She2, Puf2).


Assuntos
Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/ultraestrutura , Microscopia de Fluorescência , Transporte Proteico , Proteínas Qc-SNARE/metabolismo , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , beta-Frutofuranosidase/metabolismo
3.
J Biol Chem ; 286(18): 15773-80, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454674

RESUMO

Replicating amyloids, called prions, are responsible for transmissible neurodegenerative diseases in mammals and some heritable phenotypes in fungi. The transmission of prions between species is usually inhibited, being highly sensitive to small differences in amino acid sequence of the prion-forming proteins. To understand the molecular basis of this prion interspecies barrier, we studied the transmission of the [PSI(+)] prion state from Sup35 of Saccharomyces cerevisiae to hybrid Sup35 proteins with prion-forming domains from four other closely related Saccharomyces species. Whereas all the hybrid Sup35 proteins could adopt a prion form in S. cerevisiae, they could not readily acquire the prion form from the [PSI(+)] prion of S. cerevisiae. Expression of the hybrid Sup35 proteins in S. cerevisiae [PSI(+)] cells often resulted in frequent loss of the native [PSI(+)] prion. Furthermore, all hybrid Sup35 proteins showed different patterns of interaction with the native [PSI(+)] prion in terms of co-polymerization, acquisition of the prion state, and induced prion loss, all of which were also dependent on the [PSI(+)] variant. The observed loss of S. cerevisiae [PSI(+)] can be related to inhibition of prion polymerization of S. cerevisiae Sup35 and formation of a non-heritable form of amyloid. We have therefore identified two distinct molecular origins of prion transmission barriers between closely sequence-related prion proteins: first, the inability of heterologous proteins to co-aggregate with host prion polymers, and second, acquisition by these proteins of a non-heritable amyloid fold.


Assuntos
Amiloide/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Príons/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Amiloide/genética , Fatores de Terminação de Peptídeos/genética , Príons/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...