Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(10): e14072, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37345614

RESUMO

PURPOSE: To investigate the impact of MRI patient-specific geometrical distortion (PSD) on the quality of Gamma Knife stereotactic radiosurgery (GK-SRS) plans of the vestibular schwannoma (VS) tumors. METHODS AND MATERIALS: Three open access datasets including the MPI-Leipzig Mind-Brain-Body (318 patients), the slow event-related fMRI designs dataset (62 patients), and the VS dataset (242 patients) were used. We used first two datasets to train a 3D convolution network to predict the distortion map of third dataset that were then used to calculate and correct the PSD. GK-SRS plans of VS dataset were used to evaluate dose distribution of PSD-corrected MRI images. GK-SRS prescription dose of VS cases was 12 Gy. Geometric and dosimetric discrepancies were assessed between the dose distributions and contours before and after the PSD corrections. Geometry indices were center of the contours, Dice coefficient (DC), Hausdorff distance (HD), and dosimetric indices were D µ ${D_\mu }$ , D m a x ${D_{max}}$ , D m i n ${D_{min}}$ , and D 95 % ${D_{95{\mathrm{\% }}}}$ doses, target coverage (TC), Paddick's conformity index (PCI), Paddick's gradient index (GI), and homogeneity index (HI). RESULTS: Geometric distortions of about 1.2 mm were observed at the air-tissue interfaces at the air canal and nasal cavity borders. Average center of the targets was significantly distorted along the frequency encoding direction after the PSD-correction. Average DC and HD metrics were 0.90 and 2.13 mm. Average D µ ${D_\mu }$ , D 95 % , ${D_{95{\mathrm{\% ,}}}}$ and D m i n ${D_{min}}$ in Gy significantly increased after PSD correction from 16.85 to 17.25, 12.30 to 12.77, and from 8.98 to 9.92. D m a x ${D_{max}}$ did not significantly change after the correction. Average TC and PCI significantly increased from 0.97 to 0.98, and 0.94 to 0.96. Average GI decreased significantly from 2.24 to 2.15 after PSD correction. However, HI did not significantly change after the correction. CONCLUSION: The proposed method could predict and correct the PSD that indicates the importance of PSD correction before GK-SRS plans of the VS patients.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Radiometria , Encéfalo , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
2.
Radiat Oncol ; 15(1): 105, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393290

RESUMO

BACKGROUND: Photo-neutrons are produced at the head of the medical linear accelerators (linac) by the interaction of high-energy photons, and patients receive a whole-body-absorbed dose from these neutrons. The current study aimed to find an efficient shielding material for fast neutrons. METHODS: Nanoparticles (NPs) of Fe3O4 and B4C were applied in a matrix of silicone resin to design a proper shield against fast neutrons produced by the 18 MeV photon beam of a Varian 2100 C/D linac. Neutron macroscopic cross-sections for three types of samples were calculated by the Monte Carlo (MC) method and experimentally measured for neutrons of an Am-Be source. The designed shields in different concentrations were tested by MCNPX MC code, and the proper concentration was chosen for the experimental test. A shield was designed with two layers, including nano-iron oxide and a layer of nano-boron carbide for eliminating fast neutrons. RESULTS: MC simulation results with uncertainty less than 1% showed that for discrete energies and 50% nanomaterial concentration, the macroscopic cross-sections for iron oxide and boron carbide at the energy of 1 MeV were 0.36 cm- 1 and 0.32 cm- 1, respectively. For 30% nanomaterial concentration, the calculated macroscopic cross-sections for iron oxide and boron carbide shields for Am-Be spectrum equaled 0.12 cm- 1 and 0.15 cm- 1, respectively, while they are 0.15 cm- 1 and 0.18 cm- 1 for the linac spectrum. In the experiment with the Am-Be spectrum, the macroscopic cross-sections for 30% nanomaterial concentration were 0.17 ± 0.01 cm- 1 for iron oxide and 0.21 ± 0.02 cm- 1 for boron carbide. The measured transmission factors for 30% nanomaterial concentration with the Am-Be spectrum were 0.71 ± 0.01, 0.66 ± 0.02, and 0.62 ± 0.01 for the iron oxide, boron carbide, and double-layer shields, respectively. In addition, these values were 0.74, 0.69, and 0.67, respectively, for MC simulation for the linac spectrum at the same concentration and thickness of 2 cm. CONCLUSION: Results achieved from MC simulation and experimental tests were in a satisfactory agreement. The difference between MC and measurements was in the range of 10%. Our results demonstrated that the designed double-layer shield has a superior macroscopic cross-section compared with two single-layer nanoshields and more efficiently eliminates fast photo-neutrons.


Assuntos
Simulação por Computador , Nanopartículas , Nêutrons , Equipamentos de Proteção , Radiocirurgia , Compostos de Boro , Compostos Férricos , Humanos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...