Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Shock ; 61(6): 885-893, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662580

RESUMO

ABSTRACT: Sepsis is the most frequent risk factor for acute kidney injury (AKI) in critically ill infants. Sepsis-induced dysregulation of kidney microcirculation in newborns is unresolved. The objective of this study was to use the translational swine model to evaluate changes in kidney function during the early phase of sepsis in newborns and the impact of fluid plus norepinephrine resuscitation. Newborn pigs (3-7-day-old) were allocated randomly to three groups: 1) sham, 2) sepsis (cecal ligation and puncture) without subsequent resuscitation, and 3) sepsis with lactated Ringer plus norepinephrine resuscitation. All animals underwent standard anesthesia and mechanical ventilation. Cardiac output and glomerular filtration rate were measured noninvasively. Mean arterial pressure, total renal blood flow, cortical perfusion, medullary perfusion, and medullary tissue oxygen tension (mtPO 2 ) were determined for 12 h. Cecal ligation and puncture decreased mean arterial pressure and cardiac output by more than 50%, with a proportional increase in renal vascular resistance and a 60-80% reduction in renal blood flow, cortical perfusion, medullary perfusion, and mtPO 2 compared to sham. Cecal ligation and puncture also decreased glomerular filtration rate by ~79% and increased AKI biomarkers. Isolated foci of tubular necrosis were observed in the septic piglets. Except for mtPO 2 , changes in all these parameters were ameliorated in resuscitated piglets. Resuscitation also attenuated sepsis-induced increases in the levels of plasma C-reactive protein, proinflammatory cytokines, lactate dehydrogenase, alanine transaminase, aspartate aminotransferase, and renal NLRP3 inflammasome. These data suggest that newborn pigs subjected to cecal ligation and puncture develop hypodynamic septic AKI. Early implementation of resuscitation lessens the degree of inflammation, AKI, and liver injury.


Assuntos
Injúria Renal Aguda , Animais Recém-Nascidos , Hidratação , Norepinefrina , Ressuscitação , Sepse , Animais , Suínos , Sepse/terapia , Sepse/fisiopatologia , Ressuscitação/métodos , Hidratação/métodos , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Inflamação , Rim/metabolismo , Circulação Renal , Taxa de Filtração Glomerular
4.
Free Radic Res ; 57(6-12): 404-412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840281

RESUMO

Individuals with sickle cell disease (SCD) are at greater risk of rhabdomyolysis, a potentially life-threatening condition resulting from the breakdown of skeletal muscle fibers. Acute kidney injury (AKI) is one of the most severe complications of rhabdomyolysis. Chronic kidney and cardiovascular disease, which account for SCD mortality, are long-term consequences of AKI. Although SCD elevates the risks of rhabdomyolysis-induced sudden death, the mechanisms that underlie rhabdomyolysis-induced AKI in SCD are unclear. In the present study, we show that, unlike their control non-sickling (AA) counterparts, transgenic homozygous SCD (SS; Townes model) mice exhibited 100% mortality 8-24 h after intramuscular glycerol injection. Five hours after glycerol injection, SS mice showed a more significant increase in myoglobinuria and plasma creatine kinase levels than AA mice. Basal plasma heme and kidney tissue iron levels were significantly higher in SS than in AA mice. In contrast to AA, glycerol-induced rhabdomyolysis aggravated these parameters in SS mice. Rhabdomyolysis also amplified oxidative stress in SS compared to AA mice. Glycerol-treated SS mice exhibited worse renal function, exemplified by a reduction in GFR with a corresponding increase in plasma and urinary biomarkers of early AKI and renal tubular damage. The free radical scavenger and Fenton chemistry inhibitor, TEMPOL, ameliorated rhabdomyolysis-induced AKI in the SS mice. These findings demonstrate that oxidative stress driven by renal iron accumulation amplifies rhabdomyolysis-induced AKI in SCD mice.


Assuntos
Injúria Renal Aguda , Anemia Falciforme , Rabdomiólise , Camundongos , Animais , Glicerol/efeitos adversos , Apoptose , Rim , Injúria Renal Aguda/induzido quimicamente , Rabdomiólise/complicações , Rabdomiólise/induzido quimicamente , Rabdomiólise/metabolismo , Anemia Falciforme/complicações , Ferro
5.
Function (Oxf) ; 4(4): zqad022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342410

RESUMO

In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Ratos , Animais , Endotelina-1/efeitos adversos , Glicerol/efeitos adversos , Mioglobina/efeitos adversos , Ratos Wistar , Rim , Injúria Renal Aguda/etiologia , Rabdomiólise/complicações
6.
Microvasc Res ; 148: 104516, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889668

RESUMO

Control of microvascular reactivity by 5-hydroxytryptamine (5-HT; serotonin) is complex and may depend on vascular bed type and 5-HT receptors. 5-HT receptors consist of seven families (5-HT1-5-HT7), with 5-HT2 predominantly mediating renal vasoconstriction. Cyclooxygenase (COX) and smooth muscle intracellular Ca2+ levels ([Ca2+]i) have been implicated in 5-HT-induced vascular reactivity. Although 5-HT receptor expression and circulating 5-HT levels are known to be dependent on postnatal age, control of neonatal renal microvascular function by 5-HT is unclear. In the present study, we demonstrate that 5-HT stimulated human TRPV4 transiently expressed in Chinese hamster ovary cells. 5-HT2A is the predominant 5-HT2 receptor subtype in freshly isolated neonatal pig renal microvascular smooth muscle cells (SMCs). HC-067047 (HC), a selective TRPV4 blocker, attenuated cation currents induced by 5-HT in the SMCs. HC also inhibited the 5-HT-induced increase in renal microvascular [Ca2+]i and constriction. Intrarenal artery infusion of 5-HT had minimal effects on systemic hemodynamics but reduced renal blood flow (RBF) and increased renal vascular resistance (RVR) in the pigs. Transdermal measurement of glomerular filtration rate (GFR) indicated that kidney infusion of 5-HT reduced GFR. HC and 5-HT2 receptor antagonist ritanserin attenuated 5-HT effects on RBF, RVR, and GFR. Moreover, the serum and urinary COX-1 and COX-2 levels in 5-HT-treated piglets were unchanged compared with the control. These data suggest that activation of renal microvascular SMC TRPV4 channels by 5-HT impairs kidney function in neonatal pigs independently of COX production.


Assuntos
Músculo Liso Vascular , Serotonina , Recém-Nascido , Cricetinae , Animais , Humanos , Suínos , Músculo Liso Vascular/metabolismo , Canais de Cátion TRPV/metabolismo , Células CHO , Cricetulus , Rim/irrigação sanguínea , Receptores de Serotonina/metabolismo
7.
J Vis Exp ; (187)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190295

RESUMO

Transdermal measurement of glomerular filtration rate (GFR) has been used to evaluate kidney function in conscious animals. This technique is well established in rodents to study acute kidney injury and chronic kidney disease. However, GFR measurement using the transdermal system has not been validated in pigs, a species with a similar renal system to humans. Hence, we investigated the effect of sepsis on transdermal GFR in anesthetized and mechanically ventilated neonatal pigs. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). The transdermal GFR measurement system consisting of a miniaturized fluorescence sensor was attached to the pig's shaved skin to determine the clearance of fluorescein-isothiocyanate (FITC) conjugated sinistrin, an intravenously injected GFR tracer. Our results show that at 12 h post-CLP, serum creatinine increased with a decrease in GFR. This study demonstrates, for the first time, the utility of the transdermal GFR approach in determining renal function in mechanically ventilated, neonatal pigs.


Assuntos
Respiração Artificial , Sepse , Animais , Creatinina , Fluoresceína-5-Isotiocianato , Fluoresceínas , Taxa de Filtração Glomerular , Humanos , Recém-Nascido , Rim , Oligossacarídeos , Suínos
8.
Redox Biol ; 55: 102394, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841629

RESUMO

Vasoactive endothelin (ET) is generated by ET converting enzyme (ECE)-induced proteolytic processing of pro-molecule big ET to biologically active peptides. H2O2 has been shown to increase the expression of ECE1 via transactivation of its promoter. The present study demonstrates that H2O2 triggered ECE1-dependent ET1-3 production in neonatal pig proximal tubule (PT) epithelial cells. A uniaxial stretch of PT cells decreased catalase, increased NADPH oxidase (NOX)2 and NOX4, and increased H2O2 levels. Stretch also increased cellular ECE1, an effect reversed by EUK-134 (a synthetic superoxide dismutase/catalase mimetic), NOX inhibitor apocynin, and siRNA-mediated knockdown of NOX2 and NOX4. Short-term unilateral ureteral obstruction (UUO), an inducer of renal tubular cell stretch and oxidative stress, increased renal ET1-3 generation and vascular resistance (RVR) in neonatal pigs. Despite removing the obstruction, UUO-induced increase in RVR persisted, resulting in early acute kidney injury (AKI). ET receptor (ETR)-operated Ca2+ entry in renal microvascular smooth muscle (SM) via transient receptor potential channel 3 (TRPC3) channels reduced renal blood flow and increased RVR. Although acute reversible UUO (rUUO) did not change protein expression levels of ETR and TRPC3 in renal microvessels, inhibition of ECE1, ETR, and TRPC3 protected against renal hypoperfusion, RVR increase, and early AKI. These data suggest that mechanical stretch-driven oxyradical generation stimulates ET production in neonatal pig renal epithelial cells. ET activates renal microvascular SM TRPC3, leading to persistent vasoconstriction and reduction in renal blood flow. These mechanisms may underlie rUUO-induced renal insufficiency in infants.

9.
Am J Physiol Renal Physiol ; 322(2): F197-F207, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001664

RESUMO

KV7 channels, the voltage-gated K+ channels encoded by KCNQ genes, mediate heterogeneous vascular responses in rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter mean arterial pressure, renal blood flow, and renal vascular resistance in the pigs. An ∼20 mmHg reduction in mean arterial pressure evoked effective autoregulation of renal blood flow, which HMR inhibited. We conclude that 1) the expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.NEW & NOTEWORTHY KV7.1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. KV7.1 is functionally expressed in neonatal pig renal vascular smooth muscle cells (SMCs). A decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs. Although SMC KV7.1 does not control basal renal vascular resistance, its inhibition blunts neonatal renal autoregulation engendered by a step decrease in arterial pressure.


Assuntos
Pressão Arterial/efeitos dos fármacos , Cromanos/farmacologia , Canal de Potássio KCNQ1/antagonistas & inibidores , Rim/irrigação sanguínea , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Circulação Renal/efeitos dos fármacos , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Homeostase , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Sus scrofa
10.
Niger J Physiol Sci ; 30(1-2): 73-8, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27507780

RESUMO

The effects of oral dose of aqueous extract of Moringa oleifera and tetracycline antibiotics on cutaneous wounds infected with Staphylococcus aureus were studied in eighteen adult wistar rats (159±31.5g) randomized into three groups: Group A, n = 6, Moringa oleifera-(300 mg/kg). Group B, n = 6, tetracycline (9.4 mg/kg) and Group C, n = 6, Sterile water (control). Six millimetres diameter nape wound, created on each rat under 2% xylazine (5 mg/kg) and 5% ketamine (35 mg/kg), was contaminated with Staphylococcus aureus (108 Colony Forming Unit (CFU). Following infection, treatment was commenced with daily oral dose of test preparations and the wounds were evaluated every other day i.e., day 3, 5, 7, 9, 11, 13 and 15 for wetness (wound exudation), wound edge oedema, hyperaemia, granulation tissues and contraction (diameter). Severe wound exudation existed in all the groups between days 0-3 (p = 1.00). A significantly less wound exudation was observed at days 3-5 (p = 0.000) and 5-9 (p = 0.003) (Control< Tetracycline Moringa> Tetracycline). Differences in wound diameter was not significant except at days 5-9 (p = 0.013) (Control> Moringa >Tetracycline). Oral doses of Moringa oleifera extract (300mg/kg) and tetracycline (9.4mg/kg) are not effective as antimicrobial or immune-boosting agents to enhance healing of wounds infected with Staphylococcus aureus and hence not recommended for rapid clearance of Staphylococcus aureus infected wounds.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Moringa oleifera , Extratos Vegetais/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Tetraciclina/administração & dosagem , Cicatrização/efeitos dos fármacos , Administração Oral , Animais , Antibacterianos/administração & dosagem , Masculino , Staphylococcus aureus Resistente à Meticilina/fisiologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Distribuição Aleatória , Ratos , Ratos Wistar , Infecções Estafilocócicas/patologia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...