Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37168595

RESUMO

Machine learning (ML) techniques are widely adopted in manufacturing systems for discovering valuable patterns in shopfloor data. In this regard, machine learning models learn patterns in data to optimize process parameters, forecast equipment deterioration, and plan maintenance strategies among other uses. Thus, this article presents the dataset collected from an assembly line known as the FASTory assembly line. This data contains more than 4,000 data samples of conveyor belt motor driver's power consumption. The FASTory assembly line is equipped with web-based industrial controllers and smart 3-phase energy monitoring modules as an expansion to these controllers. For data collection, an application was developed in a timely manner. The application receives a new data sample as JavaScript Object Notation (JSON) every second. Afterwards, the application extracts the energy data for the relevant phase and persists it in a MySQL database for the purpose of processing at a later stage. This data is collected for two separate cases: static case and dynamic case. In the static case, the power consumption data is collected under different loads and belt tension values. This data is used by a prognostic model (Artificial Neural Network (ANN)) to learn the conveyor belt motor driver's power consumption pattern under different belt tension values and load conditions. The data collected during the dynamic case is used to investigate how the belt tension affects the movement of the pallet between conveyor zones. The knowledge obtained from the power consumption data of the conveyor belt motor driver is used to forecast the gradual behavioural deterioration of the conveyor belts used for the transportation of pallets between processing workstations of discrete manufacturing systems.

2.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808440

RESUMO

Loneliness and social isolation are subjective measures associated with the feeling of discomfort and distress. Various factors associated with the feeling of loneliness or social isolation are: the built environment, long-term illnesses, the presence of disabilities or health problems, etc. One of the most important aspect which could impact feelings of loneliness is mobility. In this paper, we present a machine-learning based approach to classify the user loneliness levels using their indoor and outdoor mobility patterns. User mobility data has been collected based on indoor and outdoor sensors carried on by volunteers frequenting an elderly nursing house in Tampere region, Finland. The data was collected using Pozyx sensor for indoor data and Pico minifinder sensor for outdoor data. Mobility patterns such as the distance traveled indoors and outdoors, indoor and outdoor estimated speed, and frequently visited clusters were the most relevant features for classifying the user's perceived loneliness levels.Three types of data used for classification task were indoor data, outdoor data and combined indoor-outdoor data. Indoor data consisted of indoor mobility data and statistical features from accelerometer data, outdoor data consisted of outdoor mobility data and other parameters such as speed recorded from sensors and course of a person whereas combined indoor-outdoor data had common mobility features from both indoor and outdoor data. We found that the machine-learning model based on XGBoost algorithm achieved the highest performance with accuracy between 90% and 98% for indoor, outdoor, and combined indoor-outdoor data. We also found that Lubben-scale based labelling of perceived loneliness works better for both indoor and outdoor data, whereas UCLA scale-based labelling works better with combined indoor-outdoor data.


Assuntos
Benchmarking , Solidão , Idoso , Algoritmos , Humanos , Aprendizado de Máquina , Isolamento Social
3.
Sensors (Basel) ; 22(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161852

RESUMO

As an inevitable process, the number of older adults is increasing in many countries worldwide. Two of the main problems that society is being confronted with more and more, in this respect, are the inter-related aspects of feelings of loneliness and social isolation among older adults. In particular, the ongoing COVID-19 crisis and its associated restrictions have exacerbated the loneliness and social-isolation problems. This paper is first and foremost a comprehensive survey of loneliness monitoring and management solutions, from the multidisciplinary perspective of technology, gerontology, socio-psychology, and urban built environment. In addition, our paper also investigates machine learning-based technological solutions with wearable-sensor data, suitable to measure, monitor, manage, and/or diminish the levels of loneliness and social isolation, when one also considers the constraints and characteristics coming from social science, gerontology, and architecture/urban built environments points of view. Compared to the existing state of the art, our work is unique from the cross-disciplinary point of view, because our authors' team combines the expertise from four distinct domains, i.e., gerontology, social psychology, architecture, and wireless technology in addressing the two inter-related problems of loneliness and social isolation in older adults. This work combines a cross-disciplinary survey of the literature in the four aforementioned domains with a proposed wearable-based technological solution, introduced first as a generic framework and, then, exemplified through a simple proof of concept with dummy data. As the main findings, we provide a comprehensive view on challenges and solutions in utilizing various technologies, particularly those carried by users, also known as wearables, to measure, manage, and/or diminish the social isolation and the perceived loneliness among older adults. In addition, we also summarize the identified solutions which can be used for measuring and monitoring various loneliness- and social isolation-related metrics, and we present and validate, through a simple proof-of-concept mechanism, an approach based on machine learning for predicting and estimating loneliness levels. Open research issues in this field are also discussed.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Idoso , Humanos , Solidão , SARS-CoV-2 , Isolamento Social
4.
Int J Environ Health Res ; 28(3): 253-279, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29737193

RESUMO

The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO2, air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...