Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(12): e12307, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578411

RESUMO

There are several reports about the effect of gravity removal on some characteristics of microorganisms due to possible change in surface layer thickness and adherence properties. In this study, bioremoval efficiency of Lactobacillus acidophilus ATCC 4356 from water under simulated microgravity conditions was investigated. Furthermore, pretreatment effects (untreated, NaOH, and heat pretreated) of L. acidophilus ATCC 4356 on heavy metal removal was evaluated on microgravity, as our previous research showed impact of pretreatment on adherence properties of probiotics to environmental metals. The results showed that ability of L. acidophilus for arsenic adsorption enhanced following heat-pretreatment in simulated and normal gravity. Moreover, in both conditions of simulated microgravity and normal gravity NaOH-treated L. acidophilus increased the removal of cadmium and lead. In none of the conditions, pretreatment of lactobacillus affects mercury removal. Evaluation of stability of binding of L. acidophilus-heavy metal was investigated to check irreversibility of complex formation between microorganisms and metals in simulated gastrointestinal conditions. Data showed release of heavy metals from complex in normal gravity. Obtained results of this research show the favorable potential of simulated microgravity condition to increase bioremoval capacity of L. acidophilus for heavy metals.

2.
Environ Sci Pollut Res Int ; 29(27): 40342-40357, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35322357

RESUMO

Diazinon is known as one of the most commonly used organophosphorus pesticides which influence different pests through inactivating acetyl choline esterase enzymes. Despite diazinon applications, its toxicity to human health could result in a worldwide concern about its occurrence in foodstuffs. Malfunction of brain is considered as the main disorders induced by long time exposure to diazinon. Due to the degradation of diazinon in high temperatures and its susceptibility to oxidation as well as acidic and basic conditions, it could be degraded through several physical (9-94%) and chemical (19.3-100%) food processing procedures (both household and industrial methods). However, each of these methods has its advantages and disadvantages. Normally, the combination of these methods is more efficient in diazinon reduction. To this end, it is important to apply an effective method for diazinon reduction in the food products without affecting food quality or treating human health. It could be noticed that bioremediation by microorganisms such as probiotics could be a promising new method for diazinon's reduction in several food products.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Clorpirifos/toxicidade , Diazinon/toxicidade , Humanos , Inseticidas/toxicidade , Compostos Organofosforados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...