Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161553

RESUMO

The variation in skin textures and injuries, as well as the detection and classification of skin cancer, is a difficult task. Manually detecting skin lesions from dermoscopy images is a difficult and time-consuming process. Recent advancements in the domains of the internet of things (IoT) and artificial intelligence for medical applications demonstrated improvements in both accuracy and computational time. In this paper, a new method for multiclass skin lesion classification using best deep learning feature fusion and an extreme learning machine is proposed. The proposed method includes five primary steps: image acquisition and contrast enhancement; deep learning feature extraction using transfer learning; best feature selection using hybrid whale optimization and entropy-mutual information (EMI) approach; fusion of selected features using a modified canonical correlation based approach; and, finally, extreme learning machine based classification. The feature selection step improves the system's computational efficiency and accuracy. The experiment is carried out on two publicly available datasets, HAM10000 and ISIC2018. The achieved accuracy on both datasets is 93.40 and 94.36 percent. When compared to state-of-the-art (SOTA) techniques, the proposed method's accuracy is improved. Furthermore, the proposed method is computationally efficient.


Assuntos
Dermatopatias , Neoplasias Cutâneas , Algoritmos , Inteligência Artificial , Entropia , Humanos , Neoplasias Cutâneas/diagnóstico por imagem
2.
Methods ; 202: 88-102, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610692

RESUMO

Skin cancer is one of the most common and dangerous cancer that exists worldwide. Malignant melanoma is one of the most dangerous skin cancer types has a high mortality rate. An estimated 196,060 melanoma cases will be diagnosed in 2020 in the USA. Many computerized techniques are presented in the past to diagnose skin lesions, but they are still failing to achieve significant accuracy. To improve the existing accuracy, we proposed a hierarchical framework based on two-dimensional superpixels and deep learning. First, we enhance the contrast of original dermoscopy images by fusing local and global enhanced images. The entire enhanced images are utilized in the next step to segmentation skin lesions using three-step superpixel lesion segmentation. The segmented lesions are mapped over the whole enhanced dermoscopy images and obtained only segmented color images. Then, a deep learning model (ResNet-50) is applied to these mapped images and learned features through transfer learning. The extracted features are further optimized using an improved grasshopper optimization algorithm, which is later classified through the Naïve Bayes classifier. The proposed hierarchical method has been evaluated on three datasets (Ph2, ISBI2016, and HAM1000), consisting of three, two, and seven skin cancer classes. On these datasets, our method achieved an accuracy of 95.40%, 91.1%, and 85.50%, respectively. The results show that this method can be helpful for the classification of skin cancer with improved accuracy.


Assuntos
Aprendizado Profundo , Melanoma , Dermatopatias , Neoplasias Cutâneas , Algoritmos , Teorema de Bayes , Dermoscopia/métodos , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
3.
Microsc Res Tech ; 82(9): 1471-1488, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31168871

RESUMO

Among precision medical techniques, medical image processing is rapidly growing as a successful tool for cancer detection. Skin cancer is one of the crucial cancer types. It is identified through computer vision (CV) techniques using dermoscopic images. The early diagnosis skin cancer from dermoscopic images can be decrease the mortality rate. We propose an automated system for skin lesion detection and classification based on statistical normal distribution and optimal feature selection. Local contrast is controlled using a brighter channel enhancement technique, and segmentation is performed through a statistical normal distribution approach. The multiplication law of probability is implemented for the fusion of segmented images. In the feature extraction phase, optimized histogram, optimized color, and gray level co-occurrences matrices features are extracted and covariance-based fusion is performed. Subsequently, optimal features are selected through a binary grasshopper optimization algorithm. The selected optimal features are finally fed to a classifier and evaluated on the ISBI 2016 and ISBI 2017 data sets. Classification accuracy is computed using different Support Vector Machine (SVM) kernel functions, and the best accuracy is obtained for the cubic function. The average accuracies of the proposed segmentation on the PH2 and ISBI 2016 data sets are 93.79 and 96.04%, respectively, for an image size 512 × 512. The accuracies of the proposed classification on the ISBI 2016 and ISBI 2017 data sets are 93.80 and 93.70%, respectively. The proposed system outperforms existing methods on selected data sets.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lacerações/diagnóstico , Lacerações/patologia , Imagem Óptica/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Pele/patologia , Automação Laboratorial/métodos , Bioestatística , Humanos , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...