Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 40(12): 2341-2356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34486076

RESUMO

KEY MESSAGE: RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.


Assuntos
Proteínas de Arabidopsis/genética , Produtos Agrícolas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nicotiana/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Produtos Agrícolas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Homologia de Sequência de Aminoácidos , Nicotiana/metabolismo
2.
Plant Biol (Stuttg) ; 23 Suppl 1: 69-79, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33512048

RESUMO

Coronatine (COR) is a non-host specific phytotoxin secreted by Pseudomonas syringae pv. tomato that can induce leaf chlorosis and increase the virulence of pathogens during plant-pathogen interactions. Studies have shown that COR can regulate multiple physiological processes in plants, but its involvement in bacterial pathogenesis and plant growth regulation is not well understood. In this study, transcriptome sequencing was carried out on 4-week-old tomato leaves that were either mock-treated or treated with COR. Transcriptome sequencing led to the identification of 6144 differentially expressed genes (DEGs), of which 4361 genes were downregulated and 1783 genes were upregulated upon COR treatment. To obtain functional information on the DEGs, we annotated these genes using GO and KEGG databases. Functional classification analysis showed that the DEGs were primarily involved in photosynthesis, chlorophyll and carotenoid biosynthesis, jasmonic acid (JA) synthesis and phenylpropane metabolism. A total of 23 genes related to chlorophyll biosynthesis had significant changes, of which 22 genes were downregulated and one gene was upregulated, indicating that chlorophyll biosynthesis was inhibited upon COR treatment. A total of 17 photosystem I related genes and 22 photosystem II related genes involving 20 protein subunits were also downregulated. In the JA synthesis pathway, 25 genes were up regulated, and six genes were downregulated in COR treated samples. COR was also involved in the regulation of multiple secondary metabolites. The identified DEGs will help us better understand the virulence effects and physiological functions of COR and provide a theoretical basis for breeding resistance into economically important crops.


Assuntos
Solanum lycopersicum , Aminoácidos , Regulação da Expressão Gênica de Plantas , Indenos , Solanum lycopersicum/genética , Fotossíntese , Melhoramento Vegetal , Doenças das Plantas , Pseudomonas syringae
3.
Curr Issues Mol Biol ; 11 Suppl 1: i11-19, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19193960

RESUMO

Multigeneic QTL present significant problems to analysis. Resistance to soybean (Glycine max (L) Merr.) sudden death syndrome (SDS) caused by Fusarium virguliforme was partly underlain by QRfs2 that was clustered with, or pleiotropic to, the multigeneic rhg1 locus providing resistance to soybean cyst nematode (SCN; Heterodera glycines). A group of five genes were found between the two markers that delimited the Rfs2/rhg1 locus. One of the five genes was predicted to encode an unusual diphenol oxidase (laccase; EC 1.10.3.2). The aim of this study was to characterize this member of the soybean laccase gene-family and explore its involvement in SDS resistance. A genomic clone and a full length cDNA was isolated from resistant cultivar 'Forrest' that were different among susceptible cultivars 'Asgrow 3244' and 'Williams 82' at four residues R/H168, I/M271, R/H330, E/K470. Additional differences were found in six of the seven introns and the promoter region. Transcript abundance (TA) among genotypes that varied for resistance to SDS or SCN did not differ significantly. Therefore the protein activity was inferred to underlie resistance. Protein expressed in yeast pYES2/NTB had weak enzyme activity with common substrates but good activity with root phenolics. The Forrest isoform may underlie both QRfs2 and rhg1.


Assuntos
Glycine max/genética , Lacase/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/metabolismo , Fusarium/metabolismo , Lacase/genética , Dados de Sequência Molecular , Nematoides/fisiologia , Filogenia , Proteínas de Plantas/genética , Glycine max/enzimologia , Glycine max/microbiologia , Glycine max/parasitologia , Síndrome
4.
Plant Methods ; 2: 9, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16725032

RESUMO

BACKGROUND: The creation of minimally redundant tile paths (hereafter MTP) from contiguous sets of overlapping clones (hereafter contigs) in physical maps is a critical step for structural and functional genomics. Build 4 of the physical map of soybean (Glycine max L. Merr. cv. 'Forrest') showed the 1 Gbp haploid genome was composed of 0.7 Gbp diploid, 0.1 Gbp tetraploid and 0.2 Gbp octoploid regions. Therefore, the size of the unique genome was about 0.8 Gbp. The aim here was to create MTP sub-libraries from the soybean cv. Forrest physical map builds 2 to 4. RESULTS: The first MTP, named MTP2, was 14,208 clones (of mean insert size 140 kbp) picked from the 5,597 contigs of build 2. MTP2 was constructed from three BAC libraries (BamHI (B), HindIII (H) and EcoRI (E) inserts). MTP2 encompassed the contigs of build 3 that derived from build 2 by a series of contig merges. MTP2 encompassed 2 Gbp compared to the soybean haploid genome of 1 Gbp and does not distinguish regions by ploidy. The second and third MTPs, called MTP4BH and MTP4E, were each based on build 4. Each was semi-automatically selected from 2,854 contigs. MTP4BH was 4,608 B and H insert clones of mean size 173 kbp in the large (27.6 kbp) T-DNA vector pCLD04541. MTP4BH was suitable for plant transformation and functional genomics. MTP4E was 4,608 BAC clones with large inserts (mean 175 kbp) in the small (7.5 kbp) pECBAC1 vector. MTP4E was suitable for DNA sequencing. MTP4BH and MTP4E clones each encompassed about 0.8 Gbp, the 0.7 Gbp diploid regions and 0.05 Gbp each from the tetraploid and octoploid regions. MTP2 and MTP4BH were used for BAC-end sequencing, EST integration, micro-satellite integration into the physical map and high information content fingerprinting. MTP4E will be used for genome sequence by pooled genomic clone index. CONCLUSION: Each MTP and associated BES will be useful to deconvolute and ultimately finish the whole genome shotgun sequence of soybean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...