Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 16(1): 31, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486289

RESUMO

In materials science, accurately computing properties like viscosity, melting point, and glass transition temperatures solely through physics-based models is challenging. Data-driven machine learning (ML) also poses challenges in constructing ML models, especially in the material science domain where data is limited. To address this, we integrate physics-informed descriptors from molecular dynamics (MD) simulations to enhance the accuracy and interpretability of ML models. Our current study focuses on accurately predicting viscosity in liquid systems using MD descriptors. In this work, we curated a comprehensive dataset of over 4000 small organic molecules' viscosities from scientific literature, publications, and online databases. This dataset enabled us to develop quantitative structure-property relationships (QSPR) consisting of descriptor-based and graph neural network models to predict temperature-dependent viscosities for a wide range of viscosities. The QSPR models reveal that including MD descriptors improves the prediction of experimental viscosities, particularly at the small data set scale of fewer than a thousand data points. Furthermore, feature importance tools reveal that intermolecular interactions captured by MD descriptors are most important for viscosity predictions. Finally, the QSPR models can accurately capture the inverse relationship between viscosity and temperature for six battery-relevant solvents, some of which were not included in the original data set. Our research highlights the effectiveness of incorporating MD descriptors into QSPR models, which leads to improved accuracy for properties that are difficult to predict when using physics-based models alone or when limited data is available.

2.
Sci Rep ; 13(1): 17251, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821501

RESUMO

Understanding and predicting the properties of polymers is vital to developing tailored polymer molecules for desired applications. Classical force fields may fail to capture key properties, for example, the transport properties of certain polymer systems such as polyethylene glycol. As a solution, we present an alternative potential energy surface, a charge recursive neural network (QRNN) model trained on DFT calculations made on smaller atomic clusters that generalizes well to oligomers comprising larger atomic clusters or longer chains. We demonstrate the validity of the polymer QRNN workflow by modeling the oligomers of ethylene glycol. We apply two rounds of active learning (addition of new training clusters based on current model performance) and implement a novel model training approach that uses partial charges from a semi-empirical method. Our developed QRNN model for polymers produces stable molecular dynamics (MD) simulation trajectory and captures the dynamics of polymer chains as indicated by the striking agreement with experimental values. Our model allows working on much larger systems than allowed by DFT simulations, at the same time providing a more accurate force field than classical force fields which provides a promising avenue for large-scale molecular simulations of polymeric systems.

3.
Chem Sci ; 10(36): 8374-8383, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31762970

RESUMO

The process of developing new compounds and materials is increasingly driven by computational modeling and simulation, which allow us to characterize candidates before pursuing them in the laboratory. One of the non-trivial properties of interest for organic materials is their packing in the bulk, which is highly dependent on their molecular structure. By controlling the latter, we can realize materials with a desired density (as well as other target properties). Molecular dynamics simulations are a popular and reasonably accurate way to compute the bulk density of molecules, however, since these calculations are computationally intensive, they are not a practically viable option for high-throughput screening studies that assess material candidates on a massive scale. In this work, we employ machine learning to develop a data-derived prediction model that is an alternative to physics-based simulations, and we utilize it for the hyperscreening of 1.5 million small organic molecules as well as to gain insights into the relationship between structural makeup and packing density. We also use this study to analyze the learning curve of the employed neural network approach and gain empirical data on the dependence of model performance and training data size, which will inform future investigations.

4.
Phys Chem Chem Phys ; 21(8): 4452-4460, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734777

RESUMO

In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.

5.
J Chem Phys ; 148(24): 241712, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960320

RESUMO

Organic materials with a high index of refraction (RI) are attracting considerable interest due to their potential application in optic and optoelectronic devices. However, most of these applications require an RI value of 1.7 or larger, while typical carbon-based polymers only exhibit values in the range of 1.3-1.5. This paper introduces an efficient computational protocol for the accurate prediction of RI values in polymers to facilitate in silico studies that can guide the discovery and design of next-generation high-RI materials. Our protocol is based on the Lorentz-Lorenz equation and is parametrized by the polarizability and number density values of a given candidate compound. In the proposed scheme, we compute the former using first-principles electronic structure theory and the latter using an approximation based on van der Waals volumes. The critical parameter in the number density approximation is the packing fraction of the bulk polymer, for which we have devised a machine learning model. We demonstrate the performance of the proposed RI protocol by testing its predictions against the experimentally known RI values of 112 optical polymers. Our approach to combine first-principles and data modeling emerges as both a successful and a highly economical path to determining the RI values for a wide range of organic polymers.

6.
J Biomater Appl ; 27(8): 967-78, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22286208

RESUMO

Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by ~15%) and elastic modulus (~5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by ~65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Hidroxiapatitas/química , Nanocompostos/química , Nanotubos de Carbono/química , Prata , Aderência Bacteriana , Substitutos Ósseos/química , Módulo de Elasticidade , Dureza , Humanos , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Infecções Relacionadas à Prótese/prevenção & controle , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...