Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38125701

RESUMO

Red Supergiant stars (RSGs) are known to eject large amounts of material during this evolutionary phase. However, the processes powering the mass ejection in low- and intermediate-mass stars do not work for RSGs and the mechanism that drives the ejection remains unknown. Different mechanisms have been proposed as responsible for this mass ejection including Alfvén waves, large convective cells, and magnetohydrodynamical (MHD) disturbances at the photosphere, but so far little is known about the actual processes taking place in these objects. Here we present high angular resolution interferometric ALMA maps of VY CMa continuum and molecular emission, which resolve the structure of the ejecta with unprecedented detail. We reconstructed the 3D structure of the gas traced by the different species. It allowed us to study the morphology and kinematics of the gas traced by the different species surrounding VY CMa. Two types of ejecta are clearly observed: extended, irregular, and vast ejecta surrounding the star that are carved by localized fast outflows. The structure of the outflows is found to be particularly flat. We present a 3D reconstruction of these outflows and proof of the carving. This indicates that two different mass loss processes take place in this massive star. We tentatively propose the physical cause for the formation of both types of structures. These results provide essential information on the mass loss processes of RSGs and thus of their further evolution.

2.
Nature ; 617(7962): 696-700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198489

RESUMO

During their thermally pulsing phase, asymptotic giant branch (AGB) stars eject material that forms extended dusty envelopes1. Visible polarimetric imaging found clumpy dust clouds within two stellar radii of several oxygen-rich stars2-6. Inhomogeneous molecular gas has also been observed in multiple emission lines within several stellar radii of different oxygen-rich stars, including W Hya and Mira7-10. At the stellar surface level, infrared images have shown intricate structures around the carbon semiregular variable R Scl and in the S-type star π1 Gru11,12. Infrared images have also shown clumpy dust structures within a few stellar radii of the prototypical carbon AGB star IRC+10°216 (refs. 13,14), and studies of molecular gas distribution beyond the dust formation zone have also shown complex circumstellar structures15. Because of the lack of sufficient spatial resolution, however, the distribution of molecular gas in the stellar atmosphere and the dust formation zone of AGB carbon stars is not known, nor is how it is subsequently expelled. Here we report observations with a resolution of one stellar radius of the recently formed dust and molecular gas in the atmosphere of IRC+10°216. Lines of HCN, SiS and SiC2 appear at different radii and in different clumps, which we interpret as large convective cells in the photosphere, as seen in Betelgeuse16. The convective cells coalesce with pulsation, causing anisotropies that, together with companions17,18, shape its circumstellar envelope.

3.
Astron Astrophys ; 6492021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34334795

RESUMO

We report the first detection in space of the two doubly deuterated isotopologues of methyl acetylene. The species CHD2CCH and CH2DCCD were identified in the dense core L483 through nine and eight, respectively, rotational lines in the 72-116 GHz range using the IRAM 30m telescope. The astronomical frequencies observed here were combined with laboratory frequencies from the literature measured in the 29-47 GHz range to derive more accurate spectroscopic parameters for the two isotopologues. We derive beam-averaged column densities of (2.7 ± 0.5) × 1012 cm-2 for CHD2CCH and (2.2 ± 0.4) × 1012 cm-2 for CH2DCCD, which translate to abundance ratios CH3CCH/CHD2CCH = 34 ± 10 and CH3CCH/CH2DCCD = 42 ± 13. The doubly deuterated isotopologues of methyl acetylene are only a few times less abundant than the singly deuterated ones, concretely around 2.4 times less abundant than CH3CCD. The abundances of the different deuterated isotopologues with respect to CH3CCH are reasonably accounted for by a gas-phase chemical model in which deuteration occurs from the precursor ions C3H6D+ and C3H5D+, when the ortho-to-para ratio of molecular hydrogen is sufficiently low. This points to gas-phase chemical reactions, rather than grain-surface processes, as responsible for the formation and deuterium fractionation of CH3CCH in L483. The abundance ratios CH2DCCH/CH3CCD = 3.0 ± 0.9 and CHD2CCH/CH2DCCD = 1.25 ± 0.37 observed in L483 are consistent with the statistically expected values of three and one, respectively, with the slight overabundance of CHD2CCH compared to CH2DCCD being well explained by the chemical model.

4.
Astron Astrophys ; 6492021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34334796

RESUMO

We report the detection of the oxygen-bearing complex organic molecules propenal (C2H3CHO), vinyl alcohol (C2H3OH), methyl formate (HCOOCH3), and dimethyl ether (CH3OCH3) toward the cyanopolyyne peak of the starless core TMC-1. These molecules are detected through several emission lines in a deep Q-band line survey of TMC-1 carried out with the Yebes 40m telescope. These observations reveal that the cyanopolyyne peak of TMC-1, which is the prototype of cold dark cloud rich in carbon chains, contains also O-bearing complex organic molecules like HCOOCH3 and CH3OCH3, which have been previously seen in a handful of cold interstellar clouds. In addition, this is the first secure detection of C2H3OH in space and the first time that C2H3CHO and C2H3OH are detected in a cold environment, adding new pieces in the puzzle of complex organic molecules in cold sources. We derive column densities of (2.2 ± 0.3) × 1011 cm™2, (2.5 ± 0.5) × 1012 cm-2, (1.1 ± 0.2) × 1012 cm-2, and (2.5 ± 0.7) × 1012 cm-2 for C2H3CHO, C2H3OH, HCOOCH3, and CH3OCH3, respectively. Interestingly, C2H3OH has an abundance similar to that of its well known isomer acetaldehyde (CH3CHO), with C2H3OH/CH3CHO ~ 1 at the cyanopolyyne peak. We discuss potential formation routes to these molecules and recognize that further experimental, theoretical, and astronomical studies are needed to elucidate the true mechanism of formation of these O-bearing complex organic molecules in cold interstellar sources.

5.
Astron Astrophys ; 6502021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34334797

RESUMO

We report the detection, for the first time in space, of cyano thioformaldehyde (HCSCN) and propynethial (HCSCCH) towards the starless core TMC-1. Cyano thioformaldehyde presents a series of prominent a- and b-type lines, which are the strongest previously unassigned features in our Q-band line survey of TMC-1. Remarkably, HCSCN is four times more abundant than cyano formaldehyde (HCOCN). On the other hand, HCSCCH is five times less abundant than propynal (HCOCCH). Surprisingly, we find an abundance ratio HCSCCH/HCSCN of ∼ 0.25, in contrast with most other ethynyl-cyanide pairs of molecules for which the CCH-bearing species is more abundant than the CN-bearing one. We discuss the formation of these molecules in terms of neutral-neutral reactions of S atoms with CH2CCH and CH2CN radicals as well as of CCH and CN radicals with H2CS. The calculated abundances for the sulphur-bearing species are, however, significantly below the observed values, which points to an underestimation of the abundance of atomic sulphur in the model or to missing formation reactions, such as ion-neutral reactions.

6.
Astron Astrophys ; 6502021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34334798

RESUMO

We report the first detection in space of the cumulene carbon chain l-H2C5. A total of eleven rotational transitions, with Jup = 7-10 and Ka = 0 and 1, were detected in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telescope. We derive a column density of (1.8±0.5)×1010 cm-2. In addition, we report observations of other cumulene carbenes detected previously in TMC-1, to compare their abundances with the newly detected cumulene carbene chain. We find that l-H2C5 is ~4.0 times less abundant than the larger cumulene carbene l-H2C6, while it is ~300 and ~500 times less abundant than the shorter chains l-H2C3 and l-H2C4. We discuss the most likely gas-phase chemical routes to these cumulenes in TMC-1 and stress that chemical kinetics studies able to distinguish between different isomers are needed to shed light on the chemistry of C n H2 isomers with n > 3.

7.
Astron Astrophys ; 6482021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34257462

RESUMO

The reaction between atomic oxygen and molecular hydrogen is an important one in astrochemistry as it regulates the abundance of the hydroxyl radical and serves to open the chemistry of oxygen in diverse astronomical environments. However, the existence of a high activation barrier in the reaction with ground state oxygen atoms limits its efficiency in cold gas. In this study we calculate the dependence of the reaction rate coefficient on the rotational and vibrational state of H2 and evaluate the impact on the abundance of OH in interstellar regions strongly irradiated by far-UV photons, where H2 can be efficiently pumped to excited vibrational states. We use a recently calculated potential energy surface and carry out time-independent quantum mechanical scattering calculations to compute rate coefficients for the reaction O(3 P) + H2 (v, j) → OH + H, with H2 in vibrational states v = 0-7 and rotational states j = 0-10. We find that the reaction becomes significantly faster with increasing vibrational quantum number of H2, although even for high vibrational states of H2 (v = 4-5) for which the reaction is barrierless, the rate coefficient does not strictly attain the collision limit and still maintains a positive dependence with temperature. We implemented the calculated state-specific rate coefficients in the Meudon PDR code to model the Orion Bar PDR and evaluate the impact on the abundance of the OH radical. We find the fractional abundance of OH is enhanced by up to one order of magnitude in regions of the cloud corresponding to A V = 1.3-2.3, compared to the use of a thermal rate coefficient for O + H2, although the impact on the column density of OH is modest, of about 60%. The calculated rate coefficients will be useful to model and interpret JWST observations of OH in strongly UV-illuminated environments.

8.
Astron Astrophys ; 6492021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34257463

RESUMO

We report the detection for the first time in space of three new pure hydrocarbon cycles in TMC-1: c-C3HCCH (ethynyl cyclopropenylidene), c-C5H6 (cyclopentadiene) and c-C9H8 (indene). We derive a column density of 3.1 × 1011 cm-2 for the former cycle and similar values, in the range (1-2) × 1013 cm-2, for the two latter molecules. This means that cyclopentadiene and indene, in spite of their large size, are exceptionally abundant, only a factor of five less abundant than the ubiquitous cyclic hydrocarbon c-C3H2. The high abundance found for these two hydrocarbon cycles, together with the high abundance previously found for the propargyl radical (CH2CCH) and other hydrocarbons like vinyl and allenyl acetylene (Agúndez et al. 2021; Cernicharo et al. 2021a,b), start to allow us to quantify the abundant content of hydrocarbon rings in cold dark clouds and to identify the intermediate species that are probably behind the in situ bottom-up synthesis of aromatic cycles in these environments. While c-C3HCCH is most likely formed through the reaction between the radical CCH and c-C3H2, the high observed abundances of cyclopentadiene and indene are difficult to explain through currently proposed chemical mechanisms. Further studies are needed to identify how are five- and six-membered rings formed under the cold conditions of clouds like TMC-1.

9.
Astron Astrophys ; 6502021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34321677

RESUMO

We report the first detection in space of the single deuterated isotopologue of methylcyanoacetylene, CH2DC3N. A total of fifteen rotational transitions, with J = 8-12 and Ka = 0 and 1, were identified for this species in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telescope. The observed frequencies were used to derive for the first time the spectroscopic parameters of this deuterated isotopologue. We derive a column density of (8.0 ± 0.4) × 1010 cm-2. The abundance ratio between CH3C3N and CH2DC3N is ∼22. We also theoretically computed the principal spectroscopic constants of 13C isotopologues of CH3C3N and CH3C4H and those of the deuterated isotopologues of CH3C4H for which we could expect a similar degree of deuteration enhancement. However, we have not detected either CH2DC4H nor CH3C4D nor any 13C isotopologue. The different observed deuterium ratios in TMC-1 are reasonably accounted for by a gas phase chemical model where the low temperature conditions favor deuteron transfer through reactions with H2D+.

10.
Astron Astrophys ; 6472021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33850332

RESUMO

We present the discovery in TMC-1 of allenyl acetylene, H2CCCHCCH, through the observation of nineteen lines with a signal-to-noise ratio ~4-15. For this species, we derived a rotational temperature of 7±1K and a column density of 1.2±0.2×1013 cm-2. The other well known isomer of this molecule, methyl diacetylene (CH3C4H), has also been observed and we derived a similar rotational temperature, Tr=7.0±0.3 K, and a column density for its two states (A and E) of 6.5±0.3×1012 cm-2. Hence, allenyl acetylene and methyl diacetylene have a similar abundance. Remarkably, their abundances are close to that of vinyl acetylene (CH2CHCCH). We also searched for the other isomer of C5H4, HCCCH2CCH (1.4-Pentadiyne), but only a3σ upper limit of 2.5×1012 cm-2 to the column density can be established. These results have been compared to state-of-the-art chemical models for TMC-1, indicating the important role of these hydrocarbons in its chemistry. The rotational parameters of allenyl acetylene have been improved by fitting the existing laboratory data together with the frequencies of the transitions observed in TMC-1.

11.
Astron Astrophys ; 6472021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33850331

RESUMO

We present the first identification in interstellar space of the propargyl radical (CH2CCH). This species was observed in the cold dark cloud TMC-1 using the Yebes 40m telescope. The six strongest hyperfine components of the 20,2-10,1 rotational transition, lying at 37.46 GHz, were detected with signal-to-noise ratios in the range 4.6-12.3 σ. We derive a column density of 8.7 × 1013 cm-2 for CH2CCH, which translates to a fractional abundance relative to H2 of 8.7 × 10-9. This radical has a similar abundance to methyl acetylene, with an abundance ratio CH2CCH/CH3CCH close to one. The propargyl radical is thus one of the most abundant radicals detected in TMC-1, and it is probably the most abundant organic radical with a certain chemical complexity ever found in a cold dark cloud. We constructed a gas-phase chemical model and find calculated abundances that agree with, or fall two orders of magnitude below, the observed value depending on the poorly constrained low-temperature reactivity of CH2CCH with neutral atoms. According to the chemical model, the propargyl radical is essentially formed by the C + C2H4 reaction and by the dissociative recombination of C3Hn + ions with n = 4-6. The propargyl radical is believed to control the synthesis of the first aromatic ring in combustion processes, and it probably plays a key role in the synthesis of large organic molecules and cyclization processes to benzene in cold dark clouds.

12.
Astron Astrophys ; 6482021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33850333

RESUMO

We report the detection of the sulfur-bearing species NCS, HCCS, H2CCS, H2CCCS, and C4S for the first time in space. These molecules were found towards TMC-1 through the observation of several lines for each species. We also report the detection of C5S for the first time in a cold cloud through the observation of five lines in the 31-50 GHz range. The derived column densities are N(NCS) = (7.8±0.6)×1011 cm-2, N(HCCS) = (6.8±0.6)×1011 cm-2, N(H2CCS) = (7.8±0.8)×1011 cm-2, N(H2CCCS) = (3.7±0.4)×1011 cm-2, N(C4S) = (3.8±0.4)×1010 cm-2, and N(C5S) = (5.0±1.0)×1010 cm-2. The observed abundance ratio between C3S and C4S is 340, that is to say a factor of approximately one hundred larger than the corresponding value for CCS and C3S. The observational results are compared with a state-of-the-art chemical model, which is only partially successful in reproducing the observed abundances. These detections underline the need to improve chemical networks dealing with S-bearing species.

13.
Astron Astrophys ; 6462021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33828331

RESUMO

Using the Yebes 40m and IRAM 30m radiotelescopes, we detected two series of harmonically related lines in space that can be fitted to a symmetric rotor. The lines have been seen towards the cold dense cores TMC-1, L483, L1527, and L1544. High level of theory ab initio calculations indicate that the best possible candidate is the acetyl cation, CH3CO+, which is the most stable product resulting from the protonation of ketene. We have produced this species in the laboratory and observed its rotational transitions Ju = 10 up to Ju = 27. Hence, we report the discovery of CH3CO+ in space based on our observations, theoretical calculations, and laboratory experiments. The derived rotational and distortion constants allow us to predict the spectrum of CH3CO+ with high accuracy up to 500 GHz. We derive an abundance ratio N(H2CCO)/N(CH3CO+)~44. The high abundance of the protonated form of H2CCO is due to the high proton affinity of the neutral species. The other isomer, H2CCOH+, is found to be 178.9 kJ mol-1 above CH3CO+. The observed intensity ratio between the K=0 and K=1 lines, ~2.2, strongly suggests that the A and E symmetry states have suffered interconversion processes due to collisions with H and/or H2, or during their formation through the reaction of H 3 + with H2CCO.

14.
Astron Astrophys ; 6462021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33828332

RESUMO

We present Yebes 40m telescope observations of the three most stable C4H3N isomers towards the cyanopolyyne peak of TMC-1. We have detected 13 transitions from CH3C3N (A and E species), 16 lines from CH2CCHCN, and 27 lines (a-type and b-type) from HCCCH2CN. We thus provide a robust confirmation of the detection of HCCCH2CN and CH2CCHCN in space. We have constructed rotational diagrams for the three species, and obtained rotational temperatures between 4-8 K and similar column densities for the three isomers, in the range (1.5-3)×1012 cm-2. Our chemical model provides abundances of the order of the observed ones, although it overestimates the abundance of CH3CCCN and underestimates that of HCCCH2CN. The similarity of the observed abundances of the three isomers suggests a common origin, most probably involving reactions of the radical CN with the unsaturated hydrocarbons methyl acetylene and allene. Studies of reaction kinetics at low temperature and further observations of these molecules in different astronomical sources are needed to draw a clear picture of the chemistry of C4H3N isomers in space.

15.
Astron Astrophys ; 6462021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33824540

RESUMO

We report the detection in TMC-1 of the protonated form of C3S. The discovery of the cation HC3S+ was carried through the observation of four harmonically related lines in the Q band using the Yebes 40m radiotelescope, and is supported by accurate ab initio calculations and laboratory measurements of its rotational spectrum. We derive a column density N(HC3S+) = (2.0 ± 0.5) × 1011 cm-2, which translates to an abundance ratio C3S/HC3S+ of 65 ± 20. This ratio is comparable to the CS/HCS+ ratio (35 ± 8) and is a factor of about ten larger than the C3O/HC3O+ ratio previously found in the same source. However, the abundance ratio HC3O+/HC3S+ is 1.0 ± 0.5, while C3O/C3S is just ~ 0.11. We also searched for protonated C2S in TMC-1, based on ab initio calculations of its spectroscopic parameters, and derive a 3σ upper limit of N(HC2S+)≤ 9×1011 cm-2 and a C2S/HC2S+ ≥ 60. The observational results are compared with a state-of-the-art gas-phase chemical model and conclude that HC3S+ is mostly formed through several pathways: proton transfer to C3S, reaction of S+ with c-C3H2, and reaction between neutral atomic sulfur and the ion C3H+ 3.

16.
Astron Astrophys ; 6472021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33833468

RESUMO

We present the discovery in TMC-1 of vinyl acetylene, CH2CHCCH, and the detection, for the first time in a cold dark cloud, of HCCN, HC4N, and CH3CH2CN. A tentative detection of CH3CH2CCH is also reported. The column density of vinyl acetylene is (1.2±0.2)×1013 cm-2, which makes it one of the most abundant closed-shell hydrocarbons detected in TMC-1. Its abundance is only three times lower than that of propylene, CH3CHCH2. The column densities derived for HCCN and HC4N are (4.4±0.4)×1011 cm-2 and (3.7±0.4)×1011 cm-2, respectively. Hence, the HCCN/HC4N abundance ratio is 1.2±0.3. For ethyl cyanide we derive a column density of (1.1 ±0.3)×1011 cm-2. These results are compared with a state-of-the-art chemical model of TMC-1, which is able to account for the observed abundances of these molecules through gas-phase chemical routes.

17.
Astron Astrophys ; 6422020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33239824

RESUMO

We present a study of the isocyano isomers of the cyanopolyynes HC3N, HC5N, and HC7N in TMC-1 and IRC+10216 carried out with the Yebes 40m radio telescope. This study has enabled us to report the detection, for the first time in space, of HCCCCNC in TMC-1 and to give upper limits for HC6NC in the same source. In addition, the deuterated isotopologues of HCCNC and HNCCC were detected, along with all 13C substitutions of HCCNC, also for the first time in space. The abundance ratios of HC3N and HC5N, with their isomers, are very different in TMC-1 and IRC+10216, namely, N(HC5N)/N(HC4NC) is ~300 and ≥2100, respectively. We discuss the chemistry of the metastable isomers of cyanopolyynes in terms of the most likely formation pathways and by comparing observational abundance ratios between different sources.

18.
Astron Astrophys ; 6422020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33239825

RESUMO

Using the Yebes 40m and IRAM 30m radio telescopes, we detected a series of harmonically related lines with a rotational constant B 0=4460.590±0.001 MHz and a distortion constant D 0=0.511 ±0.005 kHz towards the cold dense core TMC-1. High-level-of-theory ab initio calculations indicate that the best possible candidate is protonated tricarbon monoxide, HC3O+. We have succeeded in producing this species in the laboratory and observed its J u -J l = 2-1 and 3-2 rotational transitions. Hence, we report the discovery of HC3O+ in space based on our observations, theoretical calculations, and laboratory experiments. We derive an abundance ratio N(C3O)/N(HC3O+)~7. The high abundance of the protonated form of C3O is due to the high proton affinity of the neutral species. The chemistry of O-bearing species is modelled, and predictions are compared to the derived abundances from our data for the most prominent O-bearing species in TMC-1.

19.
Astron Astrophys ; 6432020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33239826

RESUMO

Using the Yebes 40m radio telescope, we report the detection of a series of seven lines harmonically related with a rotational constant B 0=1295.81581 ± 0.00026 MHz and a distortion constant D 0 = 27.3 ± 0.5 Hz towards the cold dense cloud TMC-1. Ab initio calculations indicate that the best possible candidates are the cations HC5NH+ and NC4NH+. From a comparison between calculated and observed rotational constants and other arguments based on proton affinities and dipole moments, we conclude that the best candidate for a carrier of the observed lines is the protonated cyanodiacetylene cation, HC5NH+. The HC5N/HC5NH+ ratio derived in TMC-1 is 240, which is very similar to the HC3N/HC3NH+ ratio. Results are discussed in the framework of a chemical model for protonated molecules in cold dense clouds.

20.
Astron Astrophys ; 6402020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33173233

RESUMO

Observations of IRC +10216 with the Yebes 40m telescope between 31 and 50 GHz have revealed more than 150 unidentified lines. Some of them can be grouped into a new series of 26 doublets, harmonically related with integer quantum numbers ranging from J up=54 to 80. The separation of the doublets increases systematically with J, i.e., as expected for a linear species in one of its bending modes. The rotational parameters resulting from the fit to these data are B = 290.8844 ± 0.0004 MHz, D = 0.88 ± 0.04 Hz, q = 0.1463 ± 0.0001 MHz. The rotational constant is very close to that of the ground state of HC9N. Ab initio calculations show an excellent agreement between these parameters and those predicted for the lowest energy vibrationally excited state, ν 19=1, of HC9N. This is the first detection, and complete characterization in space, of vibrationally excited HC9N. An energy of 41.5 cm-1 is estimated for the ν 19 state. In addition, 17 doublets of HC7N in the ν 15=1 state, for which laboratory spectroscopy is available, have been detected for the first time in IRC+10216. Several doublets of HC5N in its ν 11=1 state have been also observed. The column density ratio between the ground and the lowest excited vibrational states are ≈127, 9.5, and 1.5 for HC5N, HC7N, and HC9N, respectively. We find that these lowest-lying vibrational states are most probably populated via infrared pumping to vibrationally excited states lying at ≈600 cm-1. The lowest vibrationally excited states thus need to be taken into account to precisely determine absolute abundances and abundanceratios for long carbon chains. The abundance ratios N(HC5N)/N(HC7N) and N(HC7N)/N(HC9N) are 2.4 and 7.7 respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...