Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Histol Embryol ; 53(4): e13064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38841825

RESUMO

There are different strains of laboratory mouse used in many different fields. These strains differ anatomically. In order to determine these anatomical differences, shape analysis was conducted according to species. CD-1, C57bl/6 and Balb-c strains were preferred to study these differences. Forty-eight adult mouse strains belonging to these strains were utilized. The bones were photographed and geometric morphometry was applied to these photographs. Principal Component Analysis was applied to determine shape variations. In Principal component 1 for cranium, CD-1 and C57bl/6 strain groups showed different shape variations, while Balb-c strain group showed similar shape variations to the other strain groups. Principal Component 1 for the mandible separated the CD-1 and C57bl/6 strain groups in terms of shape variation. Principal Component 2 explained most of the variation between the C57bl/6 and CD-1 lineage groups. In PC1 for molars, the CD-1 group showed a different shape variation from the other groups. Mahalanobis distances and Procrustes distances were measured using Canonical variance analysis to explain the differences between the lineage groups. These measurements were statistically significant. For cranium, in canonical variate 1, CD-1 group of mouse and Balb-c group of mouse were separated from each other. In canonical variate 2, C57bl/6 group of mouse were separated from the other groups. For mandible, Balb-c group of mouse in canonical variate 1 and CD-1 group of mouse in canonical variate 2 were separated from the other groups. For molars, CD-1 group of mouse in canonical variate 1 and Balb-c group of mouse in canonical variate 2 were separated from the other groups. It was thought that these anatomical differences could be caused by genotypic factors as well as dietary differences and many different habits that would affect the way their muscles work.


Assuntos
Mandíbula , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Crânio , Animais , Crânio/anatomia & histologia , Camundongos/anatomia & histologia , Mandíbula/anatomia & histologia , Camundongos Endogâmicos BALB C/anatomia & histologia , Camundongos Endogâmicos C57BL/anatomia & histologia , Dente/anatomia & histologia , Análise de Componente Principal , Especificidade da Espécie , Masculino
2.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731278

RESUMO

This research utilizes geometric morphometrics to investigate shape variation in the skull, mandible, and teeth among three rat strains: Wistar Albino (WA), Sprague Dawley (SD), and WAG/Rij (WR). Through the analysis of 48 rats using 2D geometric morphometric techniques, significant differences in their skull morphology were identified. This study indicates a shift from a rectangular to an oval cranial shape across strains, with notable size and morphological variances. Particularly, the WR strain's skull shape significantly differs from the SD and WA strains, suggesting distinct ecological or genetic pathways. Compared to the skull, mandible shape differences are less pronounced, but still significant. The WR strain exhibits a distinct mandible shape, potentially reflecting ecological adaptations like dietary habits. The teeth shape of WR rats is the most distinct. SD rats consistently exhibited larger sizes in both skull and mandible measurements, while WR rats were notably smaller. Interestingly, sexual dimorphism was not statistically significant in skull and teeth sizes, aligning with findings from previous studies. However, the mandible showed clear size differences between sexes, underscoring its potential for adaptive or behavioral studies. In summary, this study provides a comprehensive analysis of morphological variations in rat strains, highlighting the intricate interplay of size, shape, and ecological factors. These findings lay a foundation for deeper explorations into the adaptive, ecological, or genetic narratives influencing rat morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...