Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Waste Manag Res ; 39(5): 629-630, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957824
2.
Waste Manag Res ; 39(1_suppl): 18-26, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32972321

RESUMO

Malaysia recorded 8904 coronavirus disease (COVID-19) cases and 124 deaths as of 27 July 2020. Globally, everyday there are thousands of new cases of COVID-19 being recorded. Due to the high number of infections globally and nationwide the increase in the amount of clinical waste (CW) generation was expected. Malaysia has reported a 27% (by weight) increase in the generation of CW which was mostly attributed to COVID-19 related waste. This article presents the impacts of COVID-19 in waste generation, policy and regulation of CW management (CWM) in Malaysia and a case study on the CWM at a selected hospital used as a COVID-19 focal point. The current practice of CWM due to COVID-19 related cases follows the existing policy and legislation of CWM detailed in the Schedule Waste Regulation (2005), Environmental Quality Act, 1974, and with the standard operating procedure provided by the Ministry of Health, Malaysia. The case study conducted through survey and questionnaire interviews revealed that the CWM in government hospitals followed existing guidelines for CWM for COVID-19 waste, with some additional precautions and rules by the waste management contractors.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Humanos , Malásia , SARS-CoV-2
3.
Waste Manag ; 119: 135-144, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059163

RESUMO

The management of municipal solid waste (MSW) in Malaysia has been mainly focused on collection, transportation and disposal of MSW. To examine the contribution of MSW management to GHG emissions, Intergovernmental Panel on Climate Change (IPCC) 2006 Waste Model was used by deploying Tier 2 method. It estimated that 6,898,167 tonnes CO2-eq of GHG emissions were released in 2016 from solid waste disposal sites (SWDS) and are projected to increase to 9,991,486 tonnes CO2-eq in 2030. To reduce GHG emissions from MSW management, Solid-Waste-Management Greenhouse-Gas (SWM-GHG) calculator was used to compare different approaches. SWM-GHG calculator focused on three settings including recycling approach, incineration approach and integrated approach. According to SWM-GHG calculator, in 2016, 15,906,614 tonnes CO2-eq of GHG emissions were released by recycling approximately 16% of MSW and disposing of 84% of MSW in SWDS. Out of the three approaches, integrated approach can result in highest reduction of GHG emissions by 2050 (64%) from GHG emissions in 2016, as compared to recycling approach (50% reduction) and incineration approach (46% reduction). While, recycling has been the main national goal for last 14 years as it has increased up to 17.5% by 2016, the current Malaysian government aims to establish 8 incinerators in Malaysia that will treat approximately 32% of MSW annually. However, estimations of SWM-GHG calculator and some opportunities and threats highlighted by SWOT analysis suggest the integrated approach as the best suited approach for Malaysia for achieving significant and sustainable reductions in GHG emissions.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Gases/análise , Efeito Estufa , Malásia , Resíduos Sólidos/análise
6.
Waste Manag Res ; 37(10): 987-1002, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31084415

RESUMO

Marine debris, defined as any persistent manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment, has been highlighted as a contaminant of global environmental and economic concern. The five main categories of marine debris comprise of plastic, paper, metal, textile, glass and rubber. Plastics is recognised as the major constituent of marine debris, representing between 50% and 90% of the total marine debris found globally. Between 4.8 and 12.7 million metric tonnes of consumer plastics end up in the world oceans annually, resulting in the presence of more than 100 million particles of macroplastics in only 12 regional seas worldwide, and with 51 trillion particles of microplastic floating on the ocean surface globally. The impacts of marine debris can be branched out into three categories; injury to or death of marine organisms, harm to marine environment and effects on human health and economy. Marine mammals often accidentally ingest marine debris because of its appearance that can easily be mistaken as food. Moreover, floating plastics may act as vehicles for chemicals and/or environmental contaminants, which may be absorbed on to their surface during their use and permanence into the environment. Additionally, floating plastics is a potential vector for the introduction of invasive species that get attached to it, into the marine environment. In addition, human beings are not excluded from the impact of marine debris as they become exposed to microplastics through seafood consumption. Moreover, landscape degradation owing to debris accumulation is an eyesore and aesthetically unpleasant, thus resulting in decreased tourism and subsequent income loss. There are a wide range of initiatives that have been taken to tackle the issue of marine debris. They may involve manual removal of marine debris from coastal and aquatic environment in form of programmes and projects organised, such as beach clean-ups by scientific communities, non-governmental organizations and the removal of marine litter from Europe's four regional seas, respectively. Other initiatives focus on assessment, reduction, prevention and management of marine debris under the umbrella of international (the United Nations Environment Programme/Mediterranean Action Plan, the Oslo/Paris Convention) and regional organisations - that is, the Helsinki Commission. There are also a number of international conventions and national regulations that encourage mitigation and management of marine debris. However, it is argued that these initiatives are short-term unsustainable solutions and the long-term sustainable solution would be adoption of circular economy. Similarly, four of the sustainable developmental goals have targets that promote mitigation of marine debris by efficient waste management and practice of 3R. As evident by the Ad Hoc Expert Group on Marine Litter and Microplastics meeting, tackling the marine debris crisis is not a straightforward, one-size-fits-all solution, but rather an integrated and continuous effort required at local, regional and global level.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Europa (Continente) , Humanos , Oceanos e Mares , Resíduos
9.
10.
Waste Manag Res ; 36(12): 1146-1156, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30067147

RESUMO

The widespread distribution of persistent organic pollutants (POPs) in landfill leachate is problematic due to their acute toxicity, carcinogenicity and genotoxicity effects, which could be detrimental to public health and ecological systems. The objective of this study was to evaluate the effective removal of POPs - namely, p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- - from landfill leachate using locust bean gum (LBG), and in comparison with commonly used alum. The response surface methodology coupled with a Box-Behnken design was employed to optimize the operating factors for optimal POPs removal. A quadratic polynomial model was fitted into the data with the R2 values of 0.97 and 0.96 for the removal of p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl), (S)-, respectively. The physicochemical characteristics of the flocs produced by LBG and alum were evaluated with Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The infrared spectra of LBG-treated floc were identical with LBG powder, but there was some variation in the peaks of the functional groups, signifying the chemical interactions between flocculants and pollutant particles resulting from POPs removal. The results showed that p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- obtained 96% and 100% removal using 500 mg/L of LBG at pH 4. pH have a significant effect on POPs removal in leachate. It is estimated that treating one million gallons of leachate using alum (at 1 g/L dosage) would cost US$39, and using LBG (at 500 mg/L dosage) would cost US$2. LBG is eco-friendly, biodegradable and non-toxic and, hence, strongly recommended as an alternative to inorganic coagulants for the treatment of POPs in landfill leachate.


Assuntos
Poluentes Químicos da Água , Galactanos , Mananas , Fenóis , Gomas Vegetais , Piridinas
11.
Waste Manag Res ; 36(10): 975-984, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30058954

RESUMO

Landfill leachate contain persistent organic pollutants (POPs), namely, bisphenol A (BPA) and 2,4-Di-tert-butylphenol, which exceed the permissible limits. Thus, such landfill leachate must be treated before it is released into natural water courses. This article reports on investigations about the removal efficiency of POPs such as BPA and 2,4-Di-tert-butylphenol from leachate using locust bean gum (LBG) in comparison with alum. The vital experimental variables (pH, coagulant dosage and stirring speed) were optimised by applying response surface methodology equipped with the Box-Behnken design to reduce the POPs from leachate. An empirical quadratic polynomial model could accurately model the surface response with R2 values of 0.928 and 0.954 to reduce BPA and 2,4-Di-tert-butylphenol, respectively. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were performed on treated flocs for further understanding. FTIR analysis revealed that the bridging of pollutant particles could be due to the explicit adsorption and bridging via hydrogen bonding of a coagulation mechanism. SEM micrographs indicated that the flocs produced by LBG have a rough cloudy surface and numerous micro-pores compared with alum, which enabled the capture and removal of POPs from leachate. Results showed that the reduction efficiencies for BPA and 2,4-Di-tert-butylphenol at pH 7.5 were 76% and 84% at LBG dosage of 500 mg·L-1 and 400 mg·L-1, respectively. Coagulant dosage and pH variation have a significant effect on POPs reduction in leachate. Coagulation/flocculation using LBG could be applied for POPs reduction in leachate as a pre-treatment prior to advanced treatments.


Assuntos
Poluentes Químicos da Água , Compostos Benzidrílicos , Floculação , Fenóis
12.
Waste Manag Res ; 36(6): 481-482, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848231
13.
Environ Technol ; 39(4): 527-535, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28281885

RESUMO

Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.


Assuntos
Benzo(a)pireno/metabolismo , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Poluentes Químicos da Água/metabolismo , Benzo(a)pireno/análise , Biodegradação Ambiental , Sedimentos Geológicos/química , Água do Mar/microbiologia , Poluentes Químicos da Água/análise , Áreas Alagadas
16.
Waste Manag Res ; 33(9): 812-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092255

RESUMO

Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution.


Assuntos
Praias , Poluentes Ambientais/análise , Plásticos/análise , Resíduos Sólidos/análise , Malásia
18.
Waste Manag Res ; 32(10): 1005-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25323145

RESUMO

Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metano/análise , Modelos Teóricos , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos , Malásia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...