Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 5649, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717247

RESUMO

Human Ku70/Ku80 protein is known to influence HIV-1 replication. One of the possible reasons may be the protection of integrase from proteasomal degradation by Ku70 subunit. We demonstrated that recombinant HIV-1 integrase and Ku70 form a stable complex, while no interaction of Ku70 with integrase from prototype foamy virus was observed. By analyzing protein subdomains we determined two binding sites in the structure of both Ku70 and integrase: the 51-160 a.a. region of integrase interacts with residues 251-438 of Ku70, whereas Ku70 N-terminal domain (1-250 a.a.) contacts an α6-helix in the 200-220 a.a. integrase region. Single substitutions within integrase (E212A or L213A) block the interaction with Ku70 thus indicating that the binding site formed by the 200-220 a.a. integrase region is crucial for complex formation. E212A/L213A substitutions decreased the integrase capacity to bind Ku70 in HEK293T cells. A conjugate of 2'-ОMe-GGUUUUUGUGU oligonucleotide with eosin is shown by molecular modeling to shield integrase residues E212/L213 and is effective in blocking complex formation of Ku70 with integrase what makes the complex between α6-helix and Ku70(1-250) a possible target for drug development.


Assuntos
Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , Autoantígeno Ku/química , Autoantígeno Ku/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sistemas de Liberação de Medicamentos , Células HEK293 , Integrase de HIV/genética , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
Biochimie ; 102: 92-101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24594066

RESUMO

Model studies of the subtype B and non-subtype B integrases are still required to compare their susceptibility to antiretroviral drugs, evaluate the significance of resistance mutations and identify the impact of natural polymorphisms on the level of enzymatic reactivity. We have therefore designed the consensus integrase of the HIV-1 subtype A strain circulating in the former Soviet Union territory (FSU-A) and two of its variants with mutations of resistance to the strand transfer inhibitor raltegravir. Their genes were synthesized, and expressed in E coli; corresponding His-tagged proteins were purified using the affinity chromatography. The enzymatic properties of the consensus integrases and their sensitivity to raltegravir were examined in a series of standard in vitro reactions and compared to the properties of the integrase of HIV-1 subtype B strain HXB2. The consensus enzyme demonstrated similar DNA-binding properties, but was significantly more active than HXB-2 integrase in the reactions of DNA cleavage and integration. All integrases were equally susceptible to inhibition by raltegravir and elvitegravir, indicating that the sporadic polymorphisms inherent to the HXB-2 enzyme have little effect on its susceptibility to drugs. Insensitivity of the mutated enzymes to the inhibitors of strand transfer occurred at a cost of a 30-90% loss of the efficacies of both 3'-processing and strand transfer. This is the first study to describe the enzymatic properties of the consensus integrase of HIV-1 clade A and the effects of the resistance mutations when the complex actions of sporadic sequence polymorphisms are excluded.


Assuntos
Infecções por HIV/virologia , Integrase de HIV/química , HIV-1/química , Modelos Químicos , Modelos Teóricos , Antirretrovirais/uso terapêutico , DNA Viral/genética , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Integrase de HIV/genética , Inibidores de Integrase de HIV/química , HIV-1/enzimologia , HIV-1/patogenicidade , Humanos , Mutação , Pirrolidinonas/uso terapêutico , Raltegravir Potássico
3.
Eur J Med Chem ; 73: 73-82, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24378711

RESUMO

The integration of viral DNA into the cell genome is one of the key steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1). Therefore, the viral enzyme integrase (IN) catalyzing this process is of great interest as a target for new antiviral agents. We performed a structural-functional analysis of five different series of methylenebisphosphonates (BPs), PO3H2-C(R)(X)-PO3H2, as IN inhibitors with the goal of assessing structural elements required for the inhibitory activity. We found that IN is inhibited only by BP bearing a chlorobenzyl substituent R at the bridging carbon of the P-C-P backbone. These BP inhibited both IN-catalyzed reactions with similar efficacies. They were also active toward some INs with mutations characteristic for HIV-1 strains resistant to strand transfer inhibitors. The study of the mechanism of the IN inhibition by various BP showed that it is effected by the nature of the second substituent (X) at the bridging carbon. Among the tested compounds, only the BP with the amino group bound directly to the BP bridging carbon was found to be a noncompetitive inhibitor and, hence, it can be promising for further studies as potential inhibitor of the IN activity within the preintegration complex.


Assuntos
Difosfonatos/síntese química , Inibidores de Integrase de HIV/síntese química , HIV-1/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/farmacologia , Desenho de Fármacos , Farmacorresistência Viral , Escherichia coli/genética , Integrase de HIV/genética , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/enzimologia , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Especificidade por Substrato
4.
PLoS One ; 8(5): e62720, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667513

RESUMO

Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Farmacorresistência Viral/genética , Inibidores de Integrase de HIV/metabolismo , Integrase de HIV/genética , HIV-1/enzimologia , Ativação Linfocitária/imunologia , Animais , Linhagem Celular , Farmacorresistência Viral/imunologia , Eletroporação , Escherichia coli , Citometria de Fluxo , Integrase de HIV/biossíntese , HIV-1/imunologia , Humanos , Luciferases , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Quinolonas
5.
Biochimie ; 94(11): 2382-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22728110

RESUMO

Fluorometry using a substrate DNA labeled with a single fluorophore (6-carboxyfluorescein) at the 3'-end of the processed strand was shown to be a useful tool for monitoring DNA-binding and 3'-processing activities of HIV-1 and PFV integrases (INs). The DNA binding to either of the INs resulted in a fluorescence signal decrease, which is likely due to the fluorescence quenching by aromatic amino acids located near the 3'-end of the processed strand. The fluorescence deviations upon the 3'-processing strongly depended on the sequence of the fluorescein-labeled terminus of the substrate DNA. In the case of HIV-1 IN, a time-dependent fluorescence decrease was detected. Since it correlated with the rate of 3'-processing resulted in the labeled GT dinucleotide accumulation, it might be explained by the fluorescein quenching by a guanosine residue in the single-stranded dinucleotide. The 3'-processing catalyzed by PFV IN led to the fluorescence enhancement. We ascribed it to the migration of the cleaved AT dinucleotide conjugated with fluorescein away from the amino acids that could quench its fluorescence. The fluorescence-based assay was used for the search of new HIV-1 IN inhibitors. Some bisphosphonate derivatives, which are known to block the phosphorolytic activity of HIV-1 reverse transcriptase, were shown to inhibit HIV-1 IN at micromolar concentrations. This property makes bisphosphonates promising agents for the development of HIV-1 inhibitors affecting two viral enzymes.


Assuntos
DNA/química , DNA/metabolismo , Fluorometria/métodos , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/enzimologia , Sequência de Bases , DNA/genética , Avaliação Pré-Clínica de Medicamentos , Hibridização de Ácido Nucleico , Nucleotídeos/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Ligação Proteica , Temperatura
6.
Artigo em Inglês | MEDLINE | ID: mdl-21888554

RESUMO

Integration of the DNA copy of the genomic RNA into an infected cell genome is one of the key steps of the replication cycle of all retroviruses. It is catalyzed by the viral enzyme, integrase. We have shown that conjugates of short single-stranded oligonucleotides with eosin efficiently inhibit the catalytic activity of the HIV-1 integrase. In this article, we have found that the dependence of the integrase catalytic activity on the concentration of oligonucleotides has a bell-shaped pattern. The modulation of HIV-1 integrase activity correlated with the oligonucleotide length and was not associated with specific sequences. Moreover, a similar mode of the oligonucleotide action was found for integrase from the prototype foamy virus. This dual effect of the oligonucleotide and their conjugates with eosin might be explained by their binding with retroviral integrase in two different sites; the oligodeoxynucleotide binding in the first site results in integrase activation, whereas interactions with another one lead to inhibition of the enzyme activity. Eosin coupling to oligonucleotides did not change the mode of their action but enhanced their affinity to both binding sites. The affinity increase was found to be much more important for the site responsible for the integrase inhibition, thus explaining the high inhibitory potency of oligonucleotide-eosin conjugates.


Assuntos
Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/farmacologia , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/enzimologia , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos
7.
ACS Med Chem Lett ; 2(7): 532-7, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900345

RESUMO

Integration of human immunodeficiency virus type 1 DNA into an infected cell genome is one of the key steps of the viral replication cycle. Therefore, viral enzyme integrase, which realizes the integration, represents an attractive and validated target for the development of new antiviral drugs. In this paper, the anti-integrase activity of a series of conjugates of single-stranded oligonucleotides with hydrophobic molecules was tested, and the structure-activity relationships were also analyzed. Both oligonucleotide and hydrophobic parts of the conjugates influenced the inhibitory potency. Conjugates of 11-mer phosphorothioate oligonucleotides with 6-carboxy-4,7,2',4',5',7'-hexachlorofluorescein (HEX) were found to be the most efficient inhibitors (IC50 = 20 nM) and might be considered as lead compounds for further development of integrase inhibitors.

8.
EMBO J ; 28(7): 980-91, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19229293

RESUMO

Integration of the human immunodeficiency virus (HIV-1) cDNA into the human genome is catalysed by integrase. Several studies have shown the importance of the interaction of cellular cofactors with integrase for viral integration and infectivity. In this study, we produced a stable and functional complex between the wild-type full-length integrase (IN) and the cellular cofactor LEDGF/p75 that shows enhanced in vitro integration activity compared with the integrase alone. Mass spectrometry analysis and the fitting of known atomic structures in cryo negatively stain electron microscopy (EM) maps revealed that the functional unit comprises two asymmetric integrase dimers and two LEDGF/p75 molecules. In the presence of DNA, EM revealed the DNA-binding sites and indicated that, in each asymmetric dimer, one integrase molecule performs the catalytic reaction, whereas the other one positions the viral DNA in the active site of the opposite dimer. The positions of the target and viral DNAs for the 3' processing and integration reaction shed light on the integration mechanism, a process with wide implications for the understanding of viral-induced pathologies.


Assuntos
DNA Viral/química , Genoma Humano , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Integração Viral , Microscopia Crioeletrônica , DNA Viral/genética , DNA Viral/metabolismo , Integrase de HIV/química , Integrase de HIV/metabolismo , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Replicação Viral
9.
J Biol Chem ; 281(17): 11530-40, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16500899

RESUMO

The specific activity of the human immunodeficiency virus, type 1 (HIV-1), integrase on the viral long terminal repeat requires the binding of the enzyme to certain sequences located in the U3 and U5 regions at the ends of viral DNA, but the determinants of this specific DNA-protein recognition are not yet completely understood. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-modified nucleosides or 1,3-propanediol insertions and studied their interactions with HIV-1 integrase, using Mn2+ or Mg2+ ions as integrase cofactors. These DNA modifications had no strong effect on integrase binding to the substrate analogs but significantly affected 3'-end processing rate. The effects of nucleoside modifications at positions 5, 6, and especially 3 strongly depended on the cationic cofactor used. These effects were much more pronounced in the presence of Mg2+ than in the presence of Mn2+. Modifications of base pairs 7-9 affected 3'-end processing equally in the presence of both ions. Adenine from the 3rd bp is thought to form at least two hydrogen bonds with integrase that are crucial for specific DNA recognition. The complementary base, thymine, is not important for integrase activity. For other positions, our results suggest that integrase recognizes a fine structure of the sugar-phosphate backbone rather than heterocyclic bases. Integrase interactions with the unprocessed strand at positions 5-8 are more important than interactions with the processed strand for specific substrate recognition. Based on our results, we suggest a model for integrase interaction with the U5 substrate.


Assuntos
DNA Viral/química , Integrase de HIV/fisiologia , Repetição Terminal Longa de HIV/fisiologia , HIV-1/enzimologia , HIV-1/genética , Pareamento de Bases , Reagentes de Ligações Cruzadas , Primers do DNA/química , DNA Viral/metabolismo , Humanos , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Oligonucleotídeos/genética , Especificidade por Substrato , Integração Viral/fisiologia
10.
Eur J Biochem ; 271(1): 205-11, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14686933

RESUMO

Integrase of the human immunodeficiency virus type-1 (HIV-1) recognizes specific sequences located in the U3 and U5 regions at the ends of viral DNA. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-aminonucleosides or non-nucleoside 1,3-propanediol insertions at the third and terminal positions and studied their interactions with HIV-1 integrase. Both modifications introduced a local structural distortion in the DNA double helix. Replacement of the terminal nucleosides by corresponding 2'-aminonucleosides had no significant effect on integrase activity. We used an integrase substrate bearing terminal 2'-aminonucleosides in both strands to synthesize a duplex with cross-linked strands. This duplex was then used to determine whether terminal base pair disruption is an obligatory step of retroviral DNA 3'-processing. Processing of the cross-linked analog of the integrase substrate yielded a product of the same length as 3'-processing of the wild-type substrate but the reaction efficiency was lower. Replacement of the third adenosine in the processed strand by a corresponding 2'-aminonucleoside did not affect integrase activity, whereas, its replacement by 1,3-propanediol completely inhibited 3'-processing. Both modifications of the complementary thymidine in the nonprocessed strand increased the initial rate of 3'-processing. The same effect was observed when both nucleosides, at the third position, were replaced by corresponding 2'-aminonucleosides. This indicates that the local duplex distortion facilitated the cleavage of the phosphodiester bond. Thus, a localized destabilization of the third A-T base pair is necessary for efficient 3'-processing, whereas 3'-end-fraying is important but not absolutely required.


Assuntos
Integrase de HIV/metabolismo , Pareamento de Bases , Sequência de Bases , Reagentes de Ligações Cruzadas , Cinética , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...