Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 59(2): 262-274, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165715

RESUMO

Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.


Assuntos
Vias Biossintéticas/genética , Inativação Gênica , Genes de Plantas , Vírus de Plantas/fisiologia , Plantas Medicinais/genética , Withania/genética , Vitanolídeos/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação para Baixo/genética , Eritritol/análogos & derivados , Eritritol/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Mevalônico/metabolismo , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Plantas Geneticamente Modificadas , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatos Açúcares/metabolismo , Withania/anatomia & histologia , Withania/crescimento & desenvolvimento
2.
Funct Integr Genomics ; 17(4): 477-490, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28285413

RESUMO

Withania somnifera (L.) Dunal (Family, Solanaceae), is among the most valuable medicinal plants used in Ayurveda owing to its rich reservoir of pharmaceutically active secondary metabolites known as withanolides. Withanolides are C28-steroidal lactones having a triterpenoidal metabolic origin synthesised via mevalonate (MVA) pathway and methyl-D-erythritol-4-phosphate (MEP) pathway involving metabolic intermediacy of 24-methylene (C30-terpenoid) cholesterol. Phytochemical studies suggest differences in the content and/or nature of withanolides in different tissues of different chemotypes. Though development of genomic resources has provided information about putative genes encoding enzymes for biosynthesis of intermediate steps of terpenoid backbone, not much is known about their regulation and response to elicitation. In this study, we generated detailed molecular information about genes catalysing key regulatory steps of withanolide biosynthetic pathway. The full-length sequences of genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis and their paralogs have been characterized for their functional and structural properties as well as phylogeny using bioinformatics approach. The expression analysis suggests that these genes are differentially expressed in different tissues (with maximal expression in young leaf), chemotypes and in response to salicylic acid (SA) and methyl jasmonate (MJ) treatments. Sub-cellular localization studies suggest that both paralogs of sterol ∆-7 reductase (WsDWF5-1 and WsDWF5-2) are localized in the endoplasmic reticulum (ER) thus supporting their indispensible role in withanolide biosynthesis. Comprehensive information developed, in this study, will lead to elucidation of chemotype- as well as tissue-specific withanolide biosynthesis and development of new tools for functional genomics in this important medicinal plant.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Withania/genética , Vitanolídeos/metabolismo , Retículo Endoplasmático/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Withania/metabolismo
3.
Sci Rep ; 5: 18611, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26688389

RESUMO

Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania.


Assuntos
Plantas Medicinais/genética , Transcriptoma/genética , Withania/genética , Vitanolídeos/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/biossíntese , Metiltransferases/biossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Medicinais/metabolismo , Fatores de Transcrição/biossíntese , Withania/metabolismo
4.
Protoplasma ; 250(1): 285-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22526204

RESUMO

Withania somnifera (L.) is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicines. Pharmaceutical activities of this herb are associated with presence of secondary metabolites known as withanolides, a class of phytosteroids synthesized via mevalonate (MVA) and 2-C-methyl-D-erythritol-4-phosphate pathways. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the genes responsible for biosynthesis of these compounds. In this study, we have characterized two genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR; EC 1.1.1.267) enzymes involved in the biosynthesis of isoprenoids. The full-length cDNAs of W. somnifera DXS (WsDXS) and DXR (WsDXR) of 2,154 and 1,428 bps encode polypeptides of 717 and 475 amino acids residues, respectively. The expression analysis suggests that WsDXS and WsDXR are differentially expressed in different tissues (with maximal expression in flower and young leaf), chemotypes of Withania, and in response to salicylic acid, methyl jasmonate, as well as in mechanical injury. Analysis of genomic organization of WsDXS shows close similarity with tomato DXS in terms of exon-intron arrangements. This is the first report on characterization of isoprenoid biosynthesis pathway genes from Withania.


Assuntos
Eritritol/análogos & derivados , Panax/genética , Panax/metabolismo , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Withania/química , Clonagem Molecular , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Eritritol/química , Eritritol/genética , Eritritol/metabolismo , Regulação da Expressão Gênica de Plantas , Índia , Panax/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Raízes de Plantas/química , Fosfatos Açúcares/química , Transferases/genética , Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...