Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109164, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38414856

RESUMO

Myogenic differentiation is integral for the regeneration of skeletal muscle following tissue damage. Though high-energy post-mitotic muscle relies predominantly on mitochondrial respiration, the importance of mitochondrial remodeling in enabling muscle differentiation and the players involved are not fully known. Here we show that the mitochondrial fusion protein OPA1 is essential for muscle differentiation. Our study demonstrates that OPA1 loss or inhibition, through genetic and pharmacological means, abolishes in vivo muscle regeneration and in vitro myotube formation. We show that both the inhibition and genetic deletion of OPA1 prevent the early onset metabolic switch required to drive myoblast differentiation. In addition, we observe an OPA1-dependent upregulation of the supercomplex assembly factor, SCAF1, at the onset of differentiation. Importantly, preventing the upregulation of SCAF1, through OPA1 loss or siRNA-mediated SCAF1 knockdown, impairs metabolic reprogramming and muscle differentiation. These findings reveal the integral role of OPA1 and mitochondrial reprogramming at the onset of myogenic differentiation.

2.
ACS Appl Mater Interfaces ; 15(34): 41073-41080, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37583262

RESUMO

In this report, surfactant free solid solution of NiZn with a hierarchical architecture was synthesized via a one-pot colloidal approach. Evidence supporting hierarchical crystal growth and alloying of metals at the atomic level was obtained from field emission scanning electron microscopy and transmission electron microscopy-energy-dispersive X-ray data. Lattice sites of face-centered metallic Ni were found to be occupied by Zn as evident from powder X-ray diffraction where a gradual shift in the peak position and increase in the average lattice parameter upon reduction of the Ni content in the alloy samples can be observed. This well-alloyed, magnetically separable, non-noble metal-based solid solution has the potential to replace the palladium-based catalyst in the Suzuki-Miyaura cross-coupling of aryl halides (-Cl/-Br) and phenylboronic acid. The nanostructured catalyst was formed through the assembly of a triangular spiked and sheet-like structure and is magnetically well separable that is stable enough under the catalytic reaction condition. The developed heterogeneous catalyst and the designed economical catalytic model are the first ever reported work. The catalytic results outperformed most of the reported state-of-the-art works involving the transition metal-based catalyst.

3.
ACS Omega ; 7(51): 48615-48622, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591159

RESUMO

Aniline wastes can be converted to useful pharmaceutical and industrial compounds like azobenzene. For this purpose, a bimetallic Ag0.75Ni0.25 alloy is designed in the nanoscale range resembling a fivefold twinned morphology using water as the solvent. These newly developed alloy nanoparticles (NPs) are employed for the first time as an efficient visible light-active photocatalyst for the oxidative homocoupling of aniline to azobenzene. Our catalytic protocol is highly sustainable for a large number of aniline substrates with a high yield of the product (up to 95%), which might be attributed to the combinational and superior properties achieved on alloy formation in comparison to the monometallic counterparts. High-electron density amines (p-anisidine) display greater photocatalytic proficiency than that of low-electron density amines (4-fluoroaniline). The developed photocatalyst is magnetically well-separable and can be reused for at least five catalytic cycles without appreciable loss in its activity.

4.
Nanoscale Adv ; 3(13): 3954-3966, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133004

RESUMO

A series of copper sulfide (CS) nanoparticles (NPs) were synthesized just by varying the amount of the sulfur precursor and have been explored for the first time as a three-way heterogeneous catalyst in the photocatalytic oxidation of a number of aromatic alcohols, photocatalytic degradation and the reduction of water pollutants, and the facile synthesis of pharmaceutically important moiety 4-aryl-NH-1,2,3-triazoles. The green and novel protocol was successfully developed for the synthesis of covellite (CuS, Cu2+) and the covellite-villamaninite (CuS-CuS2) (copper in Cu2+, Cu1+) phases of copper sulfide, employing EDTA both as the chelating and capping agent via a simple precipitation method at room temperature using water as the solvent. A blue shift in the absorption spectra and band gap in the range of 2.02-2.07 eV prompted the investigation of the as-synthesized CS nanoparticles as the photocatalyst under visible light irradiation. In the absence of any oxidizing or reducing agent, covellite CuS nanoparticles showed the highest photocatalytic efficiency for the degradation of methylene blue (MB) and the reduction of carcinogenic and mutagenic Cr(vi) to non-toxic Cr(iii). Interestingly, the mixed phase of CS (CuS-CuS2), where Cu is present in both +1 and +2 oxidation states, was found to be the most efficient catalyst compared to CuS toward the visible light-mediated selective oxidation of various benzyl alcohols to their corresponding aldehydes. However, in the synthesis of substituted NH-1,2,3-triazoles, single-phase CS nanoparticles (i.e., CuS) provided the best catalytic result. This significant outcome certainly opens up the scope for realizing the present demand of low-cost multifunctional semiconductor nano-materials, which will have a huge impact on the economy and environment when they show more than two potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...