Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scientifica (Cairo) ; 2021: 2902335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249381

RESUMO

Okra pectin has been studied as a potential excipient in tablet formulations for pharmaceutical industries. Okra is widely grown and available in Ghana and other parts of the world. The prospective use of pectin from okra genotypes grown in Ghana as tablet disintegrants has not been reported. This study aims to determine the potential and comparative disintegrating properties of pectin from five okra genotypes (Abelmoschus esculentus L.) in Ghana using uncoated immediate release paracetamol tablet formulations. The yield of the pectin from the various genotypes ranged between 6.12 and 18.84% w/w. The extracted pectins had pH ranging from slightly acidic to almost neutral (6.39-6.92). Pectin from the various genotypes exhibited good swelling indexes (˃200%), varying solubility in different solvents, and low moisture content (˂20%). Elemental analysis of the extracted pectin from the various genotypes revealed very low levels of toxic metals and micronutrients. Pectin from the various genotypes was evaluated as disintegrants within concentrations of 5-10% w/w (F1-F18). Their disintegrating properties were compared to that of maize starch BP. All the formulated batches of uncoated immediate release paracetamol tablets (F1-F18) passed the following: uniformity of weight test, uniformity of dimensions, hardness, friability (˂1%), and drug content (95-105%). Significant differences (p ≤ 0.05) were observed between the hardness of the maize starch tablets and tablets formulated from pectin of the various genotypes. Pectin from all genotypes other than PC5 exhibited good disintegrating properties (D T ˂ 15 min) and subsequently passed the dissolution profile test (≥70% release in 45 minutes). Tablets formulated with PC5 as disintegrants at all concentrations (5% w/w (F5), 7.5% w/w (F11), and 10% w/w (F17)) failed the disintegration and dissolution tests. Ultimately, pectins extracted from PC1, PC2, PC3, and PC4 can be commercially exploited as disintegrants in immediate release tablets.

2.
ScientificWorldJournal ; 2021: 6672277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531880

RESUMO

Natural polymers have become attractive to pharmaceutical researchers and manufacturers as excipients because of the advantages they possess relative to their semisynthetic and synthetic counterparts. Although pectin from some natural sources has been investigated for use in the pharmaceutical industry as excipients, pectin from okra, which is readily available and used as food in many parts of the world, has not been extensively investigated as a potential control-releasing agent in tablets. This study thus seeks to determine the drug release modifying properties of okra pectin from 6 different genotypes of okra cultivated and available in Ghana. Pectin was extracted from different genotypes of okra, physicochemical properties were characterized, and control release matrix tablets of metformin (F1-F6) were formulated using the wet granulation method with the okra pectin as the drug release modifier, respectively. The drug content, in vitro drug release, and mathematical kinetic modeling of drug release from the matrix tablets were studied. Drug release profiles of formulated matrix tablets were compared to an existing (innovator) brand of metformin sustained-release tablet on the market using the similarity and difference factors, respectively. The extracted pectin had percentage yields ranging from 6 to 20% w/w with swelling indexes and water-holding capacities between 300-500% and 9-10 mL/g, respectively, and pH within 6.20-6.90. All the formulated batches passed the drug content test (90-105%) and produced the optimal release of metformin (>80%) after 24 hours. Different batches of formulated tablets exhibited different mechanisms of drug release with batches F1, F2, F5, and F6 being similar (ƒ2 values being >50 and ƒ1 values <15) to the innovator brand. Pectin from the 6 different genotypes of okra studied has the potential for use as drug release modifiers in pharmaceutical manufacturing of control release matrix tablets and production of more affordable medicines.


Assuntos
Abelmoschus/química , Portadores de Fármacos/química , Pectinas/química , Comprimidos/química , Fenômenos Químicos , Química Farmacêutica , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Cinética , Metformina/administração & dosagem , Compostos Fitoquímicos/química , Extratos Vegetais/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...