Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep ; 43(9)2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211778

RESUMO

STUDY OBJECTIVES: Assess the physiologic and self-reported effects of wind turbine noise (WTN) on sleep. METHODS: Laboratory sleep study (n = 50 participants: n = 24 living close to wind turbines and n = 26 as a reference group) using polysomnography, electrocardiography, salivary cortisol, and questionnaire endpoints. Three consecutive nights (23:00-07:00): one habituation followed by a randomized quiet Control and an intervention night with synthesized 32 dB LAEq WTN. Noise in WTN nights simulated closed and ajar windows and low and high amplitude modulation depth. RESULTS: There was a longer rapid eye movement (REM) sleep latency (+16.8 min) and lower amount of REM sleep (-11.1 min, -2.2%) in WTN nights. Other measures of objective sleep did not differ significantly between nights, including key indicators of sleep disturbance (sleep efficiency: Control 86.6%, WTN 84.2%; wakefulness after sleep onset: Control 45.2 min, WTN 52.3 min; awakenings: Control n = 11.4, WTN n = 11.5) or the cortisol awakening response. Self-reported sleep was consistently rated as worse following WTN nights, and individuals living close to wind turbines had worse self-reported sleep in both the Control and WTN nights than the reference group. CONCLUSIONS: Amplitude-modulated continuous WTN may impact on self-assessed and some aspects of physiologic sleep. Future studies are needed to generalize these findings outside of the laboratory and should include more exposure nights and further examine possible habituation or sensitization.


Assuntos
Laboratórios , Transtornos do Sono-Vigília , Humanos , Ruído/efeitos adversos , Polissonografia , Sono , Transtornos do Sono-Vigília/etiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-30453618

RESUMO

The number of onshore wind turbines in Europe has greatly increased over recent years, a trend which can be expected to continue. However, the effects of wind turbine noise on long-term health outcomes for residents living near wind farms is largely unknown, although sleep disturbance may be a cause for particular concern. Presented here are two pilot studies with the aim of examining the acoustical properties of wind turbine noise that might be of special relevance regarding effects on sleep. In both pilots, six participants spent five consecutive nights in a sound environment laboratory. During three of the nights, participants were exposed to wind turbine noise with variations in sound pressure level, amplitude modulation strength and frequency, spectral content, turbine rotational frequency and beating behaviour. The impact of noise on sleep was measured using polysomnography and questionnaires. During nights with wind turbine noise there was more frequent awakening, less deep sleep, less continuous N2 sleep and increased subjective disturbance compared to control nights. The findings indicated that amplitude modulation strength, spectral frequency and the presence of strong beats might be of particular importance for adverse sleep effects. The findings will be used in the development of experimental exposures for use in future, larger studies.


Assuntos
Ruído/efeitos adversos , Transtornos do Sono-Vigília/etiologia , Sono/fisiologia , Vento , Europa (Continente) , Feminino , Humanos , Masculino , Projetos Piloto , Polissonografia , Pressão , Transtornos do Sono-Vigília/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...