Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 237(4822): 1608-10, 1987 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17834451

RESUMO

Abundant skeletal remains demonstrate that lambeosaurine hadrosaurid, tyrannosaurid, and troodontid dinosaurs lived on the Alaskan North Slope during late Campanian-early Maestrichtian time (about 66 to 76 million years ago) in a deltaic environment dominated by herbaceous vegetation. The high ground terrestrial plant community was a mild- to cold-temperate forest composed of coniferous and broad leaf trees. The high paleolatitude (about 70 degrees to 85 degrees North) implies extreme seasonal variation in solar insolation, temperature, and herbivore food supply. Great distances of migration to contemporaneous evergreen floras and the presence of both juvenile and adult hadrosaurs suggest that they remained at high latitudes year-round. This challenges the hypothesis that short-term periods of darkness and temperature decrease resulting from a bolide impact caused dinosaurian extinction.

2.
Science ; 211(4479): 233-40, 1981 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17748008

RESUMO

Uranium-series dating of corals from marine deposits of the U.S. Atlantic Coastal Plain coupled with paleoclimatic reconstructions based on ostracode (marine) and pollen (continent) data document at least five relatively warm intervals during the last 500,000 years. On the basis of multiple paleoenvironmental criteria, we determined relative sea level positions during the warm intervals, relative to present mean sea level, were 7 +/- 5 meters at 188,000 years ago, 7.5 +/- 1.5 meters at 120,000 years ago, 6.5 +/- 3.5 meters at 94,000 years ago, and 7 +/- 3 meters at 72,000 years ago. The composite sea level chronology for the Atlantic Coastal Plain is inconsistent with independent estimates of eustatic sea level positions during interglacial intervals of the last 200,000 years. Hydroisostatic adjustment from glacial-interglacial sea level fluctuations, lithospheric flexure, and isostatic uplift from sediment unloading due to erosion provide possible mechanisms to account for the discrepancies. Alternatively, current eustatic sea level estimates for the middle and late Quaternary may require revision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA