Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Inform ; 11(1): 16, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833039

RESUMO

This study investigates the correlation between brain age and chronological age in healthy individuals using brain MRI images, aiming to identify potential biomarkers for neurodegenerative diseases like Alzheimer's. To achieve this, a novel attention-based ResNet method, 3D-Attention-Resent-SVR, is proposed to accurately estimate brain age and distinguish between Cognitively Normal (CN) and Alzheimer's disease (AD) individuals by computing the brain age gap (BAG). Unlike conventional methods, which often rely on single datasets, our approach addresses potential biases by employing four datasets for training and testing. The results, based on a combined dataset from four public sources comprising 3844 data points, demonstrate the model's efficacy with a mean absolute error (MAE) of 2.05 for brain age gap estimation. Moreover, the model's generalizability is showcased by training on three datasets and testing on a separate one, yielding a remarkable MAE of 2.4. Furthermore, leveraging BAG as the sole biomarker, our method achieves an accuracy of 92% and an AUC of 0.87 in Alzheimer's disease detection on the ADNI dataset. These findings underscore the potential of our approach in assisting with early detection and disease monitoring, emphasizing the strong correlation between BAG and AD.

2.
Anesth Pain Med ; 12(4): e127140, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36937087

RESUMO

Background: Acute kidney injury (AKI) is a complication that occurs for various reasons after surgery, especially cardiac surgery. This complication can lead to a prolonged treatment process, increased costs, and sometimes death. Prediction of postoperative AKI can help anesthesiologists to implement preventive and early treatment strategies to reduce the risk of AKI. Objectives: This study tries to predict postoperative AKI using interpretable machine learning models. Methods: For this study, the information of 1435 patients was collected from multiple centers. The gathered data are in six categories: demographic characteristics and type of surgery, past medical history (PMH), drug history (DH), laboratory information, anesthesia and surgery information, and postoperative variables. Machine learning methods, including support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), random forest (RF), logistic regression, XGBoost, and AdaBoost, were used to predict postoperative AKI. Local interpretable model-agnostic explanations (LIME) and the Shapley methods were then leveraged to check the interpretability of models. Results: Comparing the area under the curves (AUCs) obtained for different machine learning models show that the RF and XGBoost methods with values of 0.81 and 0.80 best predict postoperative AKI. The interpretations obtained for the machine learning models show that creatinine (Cr), cardiopulmonary bypass time (CPB time), blood sugar (BS), and albumin (Alb) have the most significant impact on predictions. Conclusions: The treatment team can be informed about the possibility of postoperative AKI before cardiac surgery using machine learning models such as RF and XGBoost and adjust the treatment procedure accordingly. Interpretability of predictions for each patient ensures the validity of obtained predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...