Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113238, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37906595

RESUMO

Time and space are primary dimensions of human experience. Separate lines of investigation have identified neural correlates of time and space, yet little is known about how these representations converge during self-guided experience. Here, 10 subjects with intracranially implanted microelectrodes play a timed, virtual navigation game featuring object search and retrieval tasks separated by fixed delays. Time cells and place cells activate in parallel during timed navigation intervals, whereas a separate time cell sequence spans inter-task delays. The prevalence, firing rates, and behavioral coding strengths of time cells and place cells are indistinguishable-yet time cells selectively remap between search and retrieval tasks, while place cell responses remain stable. Thus, the brain can represent time and space as overlapping but dissociable dimensions. Time cells and place cells may constitute a biological basis for the cognitive map of spatiotemporal context onto which memories are written.


Assuntos
Encéfalo , Neurônios , Humanos , Neurônios/fisiologia , Encéfalo/fisiologia , Percepção Espacial/fisiologia , Hipocampo/fisiologia
2.
Nat Commun ; 14(1): 6643, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863929

RESUMO

Our ability to recall memories of personal experiences is an essential part of daily life. These episodic memories often involve movement through space and thus require continuous encoding of one's position relative to the surrounding environment. The medial temporal lobe (MTL) is thought to be critically involved, based on studies in freely moving rodents and stationary humans. However, it remains unclear if and how the MTL represents both space and memory especially during physical navigation, given challenges associated with deep brain recordings in humans during movement. We recorded intracranial electroencephalographic (iEEG) activity while participants completed an ambulatory spatial memory task within an immersive virtual reality environment. MTL theta activity was modulated by successful memory retrieval or spatial positions within the environment, depending on dynamically changing behavioral goals. Altogether, these results demonstrate how human MTL oscillations can represent both memory and space in a temporally flexible manner during freely moving navigation.


Assuntos
Memória Episódica , Lobo Temporal , Humanos , Rememoração Mental , Memória Espacial , Eletrocorticografia , Hipocampo
3.
Nat Commun ; 14(1): 2997, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225710

RESUMO

The neurophysiological mechanisms in the human amygdala that underlie post-traumatic stress disorder (PTSD) remain poorly understood. In a first-of-its-kind pilot study, we recorded intracranial electroencephalographic data longitudinally (over one year) in two male individuals with amygdala electrodes implanted for the management of treatment-resistant PTSD (TR-PTSD) under clinical trial NCT04152993. To determine electrophysiological signatures related to emotionally aversive and clinically relevant states (trial primary endpoint), we characterized neural activity during unpleasant portions of three separate paradigms (negative emotional image viewing, listening to recordings of participant-specific trauma-related memories, and at-home-periods of symptom exacerbation). We found selective increases in amygdala theta (5-9 Hz) bandpower across all three negative experiences. Subsequent use of elevations in low-frequency amygdala bandpower as a trigger for closed-loop neuromodulation led to significant reductions in TR-PTSD symptoms (trial secondary endpoint) following one year of treatment as well as reductions in aversive-related amygdala theta activity. Altogether, our findings provide early evidence that elevated amygdala theta activity across a range of negative-related behavioral states may be a promising target for future closed-loop neuromodulation therapies in PTSD.


Assuntos
Gastrópodes , Transtornos de Estresse Pós-Traumáticos , Humanos , Masculino , Animais , Transtornos de Estresse Pós-Traumáticos/terapia , Projetos Piloto , Emoções , Afeto , Tonsila do Cerebelo
4.
Sci Rep ; 13(1): 651, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635322

RESUMO

Extracting meaning from a dynamic and variable flow of incoming information is a major goal of both natural and artificial intelligence. Computer vision (CV) guided by deep learning (DL) has made significant strides in recognizing a specific identity despite highly variable attributes. This is the same challenge faced by the nervous system and partially addressed by the concept cells-neurons exhibiting selective firing in response to specific persons/places, described in the human medial temporal lobe (MTL) ⁠. Yet, access to neurons representing a particular concept is limited due to these neurons' sparse coding. It is conceivable, however, that the information required for such decoding is present in relatively small neuronal populations. To evaluate how well neuronal populations encode identity information in natural settings, we recorded neuronal activity from multiple brain regions of nine neurosurgical epilepsy patients implanted with depth electrodes, while the subjects watched an episode of the TV series "24". First, we devised a minimally supervised CV algorithm (with comparable performance against manually-labeled data) to detect the most prevalent characters (above 1% overall appearance) in each frame. Next, we implemented DL models that used the time-varying population neural data as inputs and decoded the visual presence of the four main characters throughout the episode. This methodology allowed us to compare "computer vision" with "neuronal vision"-footprints associated with each character present in the activity of a subset of neurons-and identify the brain regions that contributed to this decoding process. We then tested the DL models during a recognition memory task following movie viewing where subjects were asked to recognize clip segments from the presented episode. DL model activations were not only modulated by the presence of the corresponding characters but also by participants' subjective memory of whether they had seen the clip segment, and by the associative strengths of the characters in the narrative plot. The described approach can offer novel ways to probe the representation of concepts in time-evolving dynamic behavioral tasks. Further, the results suggest that the information required to robustly decode concepts is present in the population activity of only tens of neurons even in brain regions beyond MTL.


Assuntos
Inteligência Artificial , Encéfalo , Humanos , Encéfalo/fisiologia , Lobo Temporal/fisiologia , Neurônios/fisiologia , Computadores
5.
Neurophotonics ; 10(1): 013507, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36507152

RESUMO

Significance: Functional near-infrared spectroscopy (fNIRS) is a popular neuroimaging technique with proliferating hardware platforms, analysis approaches, and software tools. There has not been a standardized file format for storing fNIRS data, which has hindered the sharing of data as well as the adoption and development of software tools. Aim: We endeavored to design a file format to facilitate the analysis and sharing of fNIRS data that is flexible enough to meet the community's needs and sufficiently defined to be implemented consistently across various hardware and software platforms. Approach: The shared NIRS format (SNIRF) specification was developed in consultation with the academic and commercial fNIRS community and the Society for functional Near Infrared Spectroscopy. Results: The SNIRF specification defines a format for fNIRS data acquired using continuous wave, frequency domain, time domain, and diffuse correlation spectroscopy devices. Conclusions: We present the SNIRF along with validation software and example datasets. Support for reading and writing SNIRF data has been implemented by major hardware and software platforms, and the format has found widespread use in the fNIRS community.

6.
J Biomed Opt ; 27(7)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043610

RESUMO

SIGNIFICANCE: Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. AIM: Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. APPROACH: The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. RESULTS: We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. CONCLUSIONS: The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
7.
Nature ; 589(7842): 420-425, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361808

RESUMO

Everyday tasks in social settings require humans to encode neural representations of not only their own spatial location, but also the location of other individuals within an environment. At present, the vast majority of what is known about neural representations of space for self and others stems from research in rodents and other non-human animals1-3. However, it is largely unknown how the human brain represents the location of others, and how aspects of human cognition may affect these location-encoding mechanisms. To address these questions, we examined individuals with chronically implanted electrodes while they carried out real-world spatial navigation and observation tasks. We report boundary-anchored neural representations in the medial temporal lobe that are modulated by one's own as well as another individual's spatial location. These representations depend on one's momentary cognitive state, and are strengthened when encoding of location is of higher behavioural relevance. Together, these results provide evidence for a common encoding mechanism in the human brain that represents the location of oneself and others in shared environments, and shed new light on the neural mechanisms that underlie spatial navigation and awareness of others in real-world scenarios.


Assuntos
Neurônios/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Adulto , Conscientização/fisiologia , Relógios Biológicos , Cognição/fisiologia , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Temporal/fisiologia
8.
Brain Stimul ; 14(1): 131-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33279717

RESUMO

BACKGROUND: While deep brain stimulation has been successful in treating movement disorders, such as in Parkinson's disease, its potential application in alleviating memory disorders is inconclusive. OBJECTIVE/HYPOTHESIS: We investigated the role of the location of the stimulating electrode on memory improvement and hypothesized that entorhinal white versus gray matter stimulation would have differential effects on memory. METHODS: Intracranial electrical stimulation was applied to the entorhinal area of twenty-two participants with already implanted electrodes as they completed visual memory tasks. RESULTS: We found that stimulation of right entorhinal white matter during learning had a beneficial effect on subsequent memory, while stimulation of adjacent gray matter or left-sided stimulation was ineffective. This finding was consistent across three different visually guided memory tasks. CONCLUSIONS: Our results highlight the importance of precise stimulation site on modulation of human hippocampal-dependent memory and suggest that stimulation of afferent input into the right hippocampus may be an especially promising target for enhancement of visual memory.


Assuntos
Substância Branca , Córtex Entorrinal , Hipocampo , Humanos , Memória , Lobo Temporal , Substância Branca/diagnóstico por imagem
9.
Neuron ; 108(2): 322-334.e9, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32946744

RESUMO

Uncovering the neural mechanisms underlying human natural ambulatory behavior is a major challenge for neuroscience. Current commercially available implantable devices that allow for recording and stimulation of deep brain activity in humans can provide invaluable intrinsic brain signals but are not inherently designed for research and thus lack flexible control and integration with wearable sensors. We developed a mobile deep brain recording and stimulation (Mo-DBRS) platform that enables wireless and programmable intracranial electroencephalographic recording and electrical stimulation integrated and synchronized with virtual reality/augmented reality (VR/AR) and wearables capable of external measurements (e.g., motion capture, heart rate, skin conductance, respiration, eye tracking, and scalp EEG). When used in freely moving humans with implanted neural devices, this platform is adaptable to ecologically valid environments conducive to elucidating the neural mechanisms underlying naturalistic behaviors and to the development of viable therapies for neurologic and psychiatric disorders.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/instrumentação , Eletroencefalografia/instrumentação , Desempenho Psicomotor , Telemetria/instrumentação , Dispositivos Eletrônicos Vestíveis , Realidade Aumentada , Eletroencefalografia/métodos , Humanos , Processamento de Sinais Assistido por Computador , Software , Realidade Virtual
10.
Psychol Assess ; 31(8): 1019-1027, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31045384

RESUMO

Machine learning (ML) has been introduced into the medical field as a means to provide diagnostic tools capable of enhancing accuracy and precision while minimizing laborious tasks that require human intervention. There is mounting evidence that the technology fueled by ML has the potential to detect and substantially improve treatment of complex mental disorders such as depression. We developed a framework capable of detecting depression with minimal human intervention: artificial intelligence mental evaluation (AiME). This framework consists of a short human-computer interactive evaluation that utilizes artificial intelligence, namely deep learning, and can predict whether the participant is depressed or not with satisfactory performance. Because of its ease of use, this technology can offer a viable tool for mental health professionals to identify symptoms of depression, thus enabling a faster preventative intervention. Furthermore, it may alleviate the challenge of observing and interpreting highly nuanced physiological and behavioral biomarkers of depression by providing a more objective evaluation. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Aprendizado Profundo , Transtorno Depressivo/diagnóstico por imagem , Diagnóstico por Computador/métodos , Redes Neurais de Computação , Inquéritos e Questionários , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Front Neurosci ; 12: 905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564089

RESUMO

Participants with stimulating and recording electrodes implanted within the brain for clinical evaluation and treatment provide a rare opportunity to unravel the neuronal correlates of human memory, as well as offer potential for modulation of behavior. Recent intracranial stimulation studies of memory have been inconsistent in methodologies employed and reported conclusions, which renders generalizations and construction of a framework impossible. In an effort to unify future study efforts and enable larger meta-analyses we propose in this mini-review a set of guidelines to consider when pursuing intracranial stimulation studies of human declarative memory and summarize details reported by previous relevant studies. We present technical and safety issues to consider when undertaking such studies and a checklist for researchers and clinicians to use for guidance when reporting results, including targeting, placement, and localization of electrodes, behavioral task design, stimulation and electrophysiological recording methods, details of participants, and statistical analyses. We hope that, as research in invasive stimulation of human declarative memory further progresses, these reporting guidelines will aid in setting standards for multicenter studies, in comparison of findings across studies, and in study replications.

12.
Front Neurosci ; 12: 408, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962932

RESUMO

Functional magnetic resonance imaging (fMRI) is a powerful research tool to understand the neural underpinnings of human memory. However, as memory is known to be context-dependent, differences in contexts between naturalistic settings and the MRI scanner environment may potentially confound neuroimaging findings. Virtual reality (VR) provides a unique opportunity to mitigate this issue by allowing memories to be formed and/or retrieved within immersive, navigable, visuospatial contexts. This can enhance the ecological validity of task paradigms, while still ensuring that researchers maintain experimental control over critical aspects of the learning and testing experience. This mini-review surveys the growing body of fMRI studies that have incorporated VR to address critical questions about human memory. These studies have adopted a variety of approaches, including presenting research participants with VR experiences in the scanner, asking participants to retrieve information that they had previously acquired in a VR environment, or identifying neural correlates of behavioral metrics obtained through VR-based tasks performed outside the scanner. Although most such studies to date have focused on spatial or navigational memory, we also discuss the promise of VR in aiding other areas of memory research and facilitating research into clinical disorders.

13.
Cell ; 164(1-2): 197-207, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709045

RESUMO

Hippocampal neurons show selectivity with respect to visual cues in primates, including humans, but this has never been found in rodents. To address this long-standing discrepancy, we measured hippocampal activity from rodents during real-world random foraging. Surprisingly, ∼ 25% of neurons exhibited significant directional modulation with respect to visual cues. To dissociate the contributions of visual and vestibular cues, we made similar measurements in virtual reality, in which only visual cues were informative. Here, we found significant directional modulation despite the severe loss of vestibular information, challenging prevailing theories of directionality. Changes in the amount of angular information in visual cues induced corresponding changes in head-directional modulation at the neuronal and population levels. Thus, visual cues are sufficient for-and play a predictable, causal role in-generating directionally selective hippocampal responses. These results dissociate hippocampal directional and spatial selectivity and bridge the gap between primate and rodent studies.


Assuntos
Comportamento Apetitivo , Hipocampo/fisiologia , Animais , Eletrofisiologia/métodos , Movimentos da Cabeça , Hipocampo/citologia , Humanos , Masculino , Neurônios/citologia , Ratos , Ratos Long-Evans , Vestíbulo do Labirinto/fisiologia
14.
Nat Neurosci ; 18(1): 121-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420065

RESUMO

During real-world (RW) exploration, rodent hippocampal activity shows robust spatial selectivity, which is hypothesized to be governed largely by distal visual cues, although other sensory-motor cues also contribute. Indeed, hippocampal spatial selectivity is weak in primate and human studies that use only visual cues. To determine the contribution of distal visual cues only, we measured hippocampal activity from body-fixed rodents exploring a two-dimensional virtual reality (VR). Compared to that in RW, spatial selectivity was markedly reduced during random foraging and goal-directed tasks in VR. Instead we found small but significant selectivity to distance traveled. Despite impaired spatial selectivity in VR, most spikes occurred within ∼2-s-long hippocampal motifs in both RW and VR that had similar structure, including phase precession within motif fields. Selectivity to space and distance traveled were greatly enhanced in VR tasks with stereotypical trajectories. Thus, distal visual cues alone are insufficient to generate a robust hippocampal rate code for space but are sufficient for a temporal code.


Assuntos
Gráficos por Computador , Percepção Espacial/fisiologia , Interface Usuário-Computador , Animais , Fenômenos Eletrofisiológicos/fisiologia , Objetivos , Hipocampo/fisiologia , Locomoção/fisiologia , Masculino , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans
15.
Science ; 340(6138): 1342-1346, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23641063

RESUMO

The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.


Assuntos
Hipocampo/fisiologia , Percepção Espacial , Comportamento Espacial , Percepção do Tempo , Animais , Mapeamento Encefálico , Sinais (Psicologia) , Masculino , Ratos , Ratos Endogâmicos LEC , Ritmo Teta , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...