Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 1990-1999, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222588

RESUMO

Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.

2.
Ultrasonics ; 108: 106228, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32717532

RESUMO

Fouling is one of the most challenging problems impacting the performance of membrane-based separation technology. In recent years, ultrasound have been widely applied as an unconventional method to control membrane fouling, as well as to enhance membrane cleaning. The aim of the present work is to review the current literature and the recent developments related to the use of ultrasound as an innovative and alternative approach to improve the fouling behavior of membrane separation processes. The theory underlying ultrasonic-assisted phenomena is reviewed, together with operational factors that influence the effectiveness of the ultrasound treatment, such as frequency, power intensity, pressure, temperature, pH, and operation mode. Ultrasound irradiation effectively aids the cleaning of contaminated surfaces and enhances the permeate flux, owing to cavitation phenomena and powerful convective currents, associated with secondary phenomena, such as microstreamers, shock waves, and heating. However, the lifetime of the membranes should be carefully evaluated when applying ultrasonication as a technique of cleaning or controlling membrane fouling. Indeed, the integrity of membranes after sonication and the control of erosion produced by high ultrasonic intensities are key issues hindering the scale-up of this approach in the membrane industry. This reviews highlights the topics requiring more investigations, specifically to evaluate the economic aspects of ultrasonic assisted fouling control and cleaning in membrane processes.

3.
ACS Appl Mater Interfaces ; 12(32): 36287-36300, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677425

RESUMO

In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.


Assuntos
Antibacterianos/química , Estruturas Metalorgânicas/química , Nylons/química , Prata/química , Incrustação Biológica/prevenção & controle , Escherichia coli/efeitos dos fármacos , Etilenodiaminas/química , Filtração , Imidazóis/química , Membranas Artificiais , Osmose , Permeabilidade , Polímeros/química , Propionatos/química , Sulfonas/química , Propriedades de Superfície , Purificação da Água/métodos
4.
Environ Sci Technol ; 52(9): 5246-5258, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589940

RESUMO

This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.


Assuntos
Anti-Infecciosos , Nanopartículas , Purificação da Água , Membranas Artificiais , Osmose , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...