Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Pharm Bull ; 11(2): 335-342, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33880356

RESUMO

Purpose: Transfusion of red blood cells (RBCs) is a supportive and common treatment in surgical care, trauma, and anemia. However, in vivo production of RBC seems to be a suitable alternative for blood transfusions due to the limitation of blood resources, the possibility of disease transmission, immune reactions, and the presence of rare blood groups. Cell cultures require serum-free or culture media supplemented with highly expensive animal serum, which can transmit xenoviruses. Platelet lysate (PL) can be considered as a suitable alternative containing a high level of growth factors and a low production cost. Methods: Three-step culture media supplemented with PL or fetal bovine serum (FBS) were used for proliferation and differentiation of CD34+ umbilical cord blood stem cells to erythrocytes in co-culture with bone marrow mesenchymal stem cells (BM-MSCs). The cells were cultivated for 15 days and cell proliferation and expansion were assessed using cell counts at different days. Erythroid differentiation genes, CD71 and glycophorin A expression levels were evaluated. Results: Maximum hematopoietic stem cells (HSCs) proliferation was observed on day 15 in PL-containing medium (99±17×103-fold). Gene expression and surface markers showed higher differentiation of cells in PL-containing medium. Conclusion: The results of this study indicate that PL can enhance erythroid proliferation and differentiation of CD34+ HSCs. PL can also be used as a proper alternative for FBS in the culture medium and HSCs differentiation.

2.
EXCLI J ; 20: 426-443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746671

RESUMO

The recent years have been passed with significant progressions in the utilization of microfluidic technologies for cellular investigations. The aim of microfluidics is to mimic small-scale body environment with features like optical transparency. Microfluidics can screen and monitor different cell types during culture and study cell function in response to stimuli in a fully controlled environment. No matter how the microfluidic environment is similar to in vivo environment, it is not possible to fully investigate stem cells behavior in response to stimuli during cell proliferation and differentiation. Researchers have used stem cells in different fields from fundamental researches to clinical applications. Many cells in the body possess particular functions, but stem cells do not have a specific task and can turn into almost any type of cells. Stem cells are undifferentiated cells with the ability of changing into specific cells that can be essential for the body. Researchers and physicians are interested in stem cells to use them in testing the function of the body's systems and solving their complications. This review discusses the recent advances in utilizing microfluidic techniques for the analysis of stem cells, and mentions the advantages and disadvantages of using microfluidic technology for stem cell research.

3.
Life Sci ; 265: 118767, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212151

RESUMO

According to World Health Organization (WHO) reports about 70 million couples suffer from infertility all over the world. A lot of research groups are working on this issue and have made therapeutic approaches by integrating biology, medicine, genetics, chemistry, psychology, mechanic, and many other branches of science. However, these methods have their own pros and cons. Assisted Reproductive Technologies (ART) has appeared to solve infertility problems. In Vitro Fertilization (IVF), Intracytoplasmic Sperm Injection (ICSI), Intrauterine Insemination (IUI) are the most common and conventional technologies in this regard. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. Using microfluidics in sorting sperm, conducting different steps of oocyte selection and preparation, and transferring embryo by passing sub-microliter fluid through microchannels results in low cost and short time. The size and shape of microchannels and the volume of used fluid differs from non-human cells to human cells. The most progressions have been seen in animal models. Results suggest that microfluidic systems will lead to improved efficiencies in assisted reproduction.


Assuntos
Microfluídica , Técnicas de Reprodução Assistida , Animais , Criopreservação , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro/instrumentação , Fertilização in vitro/métodos , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Técnicas de Reprodução Assistida/instrumentação , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...