Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 198: 115903, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091631

RESUMO

Chemotherapeutants used to control infestations by sea lice can be released into the marine environment surrounding aquaculture farms. Among these therapeutic agents, emamectin benzoate is extensively utilized even though its impact on non-target taxa has not been thoroughly examined. In this context, we explored the effects of emamectin benzoate on a common Norwegian habitat-forming species: the phosphorescent sea-pen Pennatula phosphorea. Specifically, we examined P. phosphorea metabolic and responses before, during and after exposure to emamectin benzoate. Results indicate that an 8-day emamectin benzoate exposure (0.8 mg/L) did not induce P. phosphorea mortality or significant behavioural or metabolic modifications. However, we highlighted the presence and persistence of emamectin benzoate in exposed P. phosphorea tissue. These results indicate that emamectin benzoate is unlikely to adversely impact P. phosphorea populations in the environment. However, persistence of emamectin benzoate in tissue constitutes a potential for bioaccumulation with repeated treatments and should be examined in further studies.


Assuntos
Copépodes , Doenças dos Peixes , Animais , Ivermectina , Aquicultura
2.
Aquat Toxicol ; 247: 106173, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468411

RESUMO

The proliferation of sea lice (Lepeophtheirus salmonis) represents a major challenge for the salmonid aquaculture industry in Norway. Hydrogen peroxide (H2O2) is a chemotherapeutant frequently used on Norwegian farms, however, its toxicity to non-target benthic species and habitats remains poorly understood. Maerl beds are constructed by the accumulation of non-geniculate coralline algae and provide important ecological functions. Due to the rapid expansion of aquaculture in Norway and the continued use of H2O2 as an anti-sea lice treatment, it is crucial to understand the impact of H2O2 on the physiology of maerl-forming species. The effects of a 1 h exposure to H2O2 on the photophysiology and bleaching of the coralline alga Lithothamnion soriferum were examined here through a controlled time-course experiment. PAM fluorimetry measurements showed that H2O2 concentrations ≥ 200 mg l-1 negatively affected photosystem II (PSII) in thalli immediately after exposure, which was observed through a significant decline in maximum photochemical efficiency (Fv/Fm) and relative electron transport rate (rETR). The negative effects on PSII induced by oxidative stress, however, appear to be reversible, and full recovery of photosynthetic characteristics was observed 48 h to 28 days after exposure to 200 mg H2O2 l-1 and 2000 mg H2O2 l-1, respectively. At 28 days after exposure, there was evidence of two- to four-times more bleaching in thalli treated with concentrations ≥ 200 mg H2O2 l-1 compared to those in the control. This indicates that despite the recovery of PSII, persistent damages can occur on the structural integrity of thalli, which may considerably increase the vulnerability of coralline algae to further exposure to H2O2 and other chemical effluents from salmonid farms.


Assuntos
Copépodes , Rodófitas , Poluentes Químicos da Água , Animais , Peróxido de Hidrogênio/toxicidade , Fotossíntese , Poluentes Químicos da Água/toxicidade
3.
Ecotoxicol Environ Saf ; 204: 111111, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32795703

RESUMO

Bath treatment chemotherapeutants, used to control sea lice infestations in the salmonid aquaculture industry, are released directly into the marine environment around fish farms and pose a serious risk to non-target species, particularly crustaceans. Hydrogen peroxide (H2O2) is the most frequently used bath treatment chemotherapeutant on Norwegian fish farms, however, limited information is available on its toxicity to European lobsters (Homarus gammarus), a commercially important species at risk of exposure due to its distribution overlapping with salmon farm locations. The aim of this study was to investigate the lethal effects of H2O2 on pelagic (stage I-IV) larvae/post-larvae and its sub-lethal effects on the benthic stage V H. gammarus. To assess the lethal effects of H2O2, we carried out a series of 1 h toxicity tests and assessed mortality after a 24 h post-exposure period. Exposure to H2O2 was toxic to all pelagic larval stages tested, with estimated median lethal concentrations (LC50) of 177, 404, 665 and 737 mg/L for stage I, II, III and IV, respectively. These concentrations represent approximately 10, 23, 40 and 43%, of the recommended H2O2 concentrations used for delousing salmon on Norwegian fish farms, respectively. To assess the sub-lethal effects of H2O2 on H. gammarus, stage V juveniles were exposed to H2O2 at concentrations of 85, 170 and 510 mg/L for 1 h and shelter-seeking behaviour and mobility endpoints were assessed. Numerous behavioural parameters including distance travelled to shelter, time to locate shelter and the number of shelter inspections, were negatively affected in lobsters exposed to H2O2 when assessed immediately after the exposure period. However, no differences between control and exposed lobsters were detected after a 24 h post-exposure period. Our results demonstrate that short term exposures to H2O2 are lethal to pelagic H. gammarus life stages and can negatively affect the shelter seeking behaviour of benthic life stages, though these behavioural changes may be short-lived.


Assuntos
Peróxido de Hidrogênio/toxicidade , Nephropidae/fisiologia , Animais , Aquicultura/métodos , Comportamento Exploratório , Pesqueiros , Larva/efeitos dos fármacos , Dose Letal Mediana , Nephropidae/efeitos dos fármacos , Noruega , Salmão , Testes de Toxicidade
4.
Environ Pollut ; 264: 114725, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32388310

RESUMO

Anti-sea lice pesticides, used in the salmonid aquaculture industry, are a growing environmental concern due to their potential to adversely affect non-target crustaceans. Azamethiphos and deltamethrin are two bath treatment pesticides used on salmon farms in Norway, however, limited information is available on their impact on European lobster (Homarus gammarus) larvae in the Norwegian marine environment. Here, we firstly report the lethal (LC50) and effective (EC50) concentrations of azamethiphos and deltamethrin for stage I and stage II larvae, following 1-h exposures. Using a hydrodynamic model, we also modelled the dispersal of both compounds into the marine environment around selected Norwegian farms and mapped the potential impact zones (areas that experience LC50 and EC50 concentrations) around each farm. Our data shows that azamethiphos and deltamethrin are acutely toxic to both larval stages, with LC50 and EC50 values below the recommended treatment concentrations. We also show that the azamethiphos impact zones around farms were relatively small (mean area of 0.04-0.2 km2), however deltamethrin impact zones covered much larger areas (mean area of 21.1-39.0 km2). These findings suggest that deltamethrin poses a significant risk to European lobster in the Norwegian marine environment while the impact of azamethiphos may be less severe.


Assuntos
Copépodes , Doenças dos Peixes , Praguicidas , Ftirápteros , Animais , Aquicultura , Larva , Nephropidae , Nitrilas , Noruega , Organotiofosfatos , Piretrinas
5.
Aquat Toxicol ; 220: 105401, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924586

RESUMO

The number of submarine power cables using either direct or alternating current is expected to increase drastically in coming decades. Data concerning the impact of magnetic fields generated by these cables on marine invertebrates are scarce. In this context, the aim of this study was to explore the potential impact of anthropogenic static and time-varying magnetic fields on the behavior of recently settled juvenile European lobsters (Homarus gammarus) using two different behavioral assays. Day-light conditions were used to stimulate the sheltering behavior and facilitate the video tracking. We showed that juvenile lobsters did not exhibit any change of behavior when submitted to an artificial magnetic field gradient (maximum intensity of 200 µT) compared to non-exposed lobsters in the ambient magnetic field. Additionally, no influence was noted on either the lobsters' ability to find shelter or modified their exploratory behavior after one week of exposure to anthropogenic magnetic fields (225 ±â€¯5 µT) which remained similar to those observed in control individuals. It appears that static and time-varying anthropogenic magnetic fields, at these intensities, do not significantly impact the behavior of juvenile European lobsters in daylight conditions. Nevertheless, to form a complete picture for this biological model, further studies are needed on the other life stages as they may respond differently.


Assuntos
Comportamento Animal/fisiologia , Campos Magnéticos/efeitos adversos , Nephropidae/fisiologia , Navios , Animais , Aprendizagem da Esquiva/fisiologia , Europa (Continente) , Comportamento Exploratório/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Modelos Teóricos , Gravação em Vídeo
6.
J Appl Toxicol ; 39(3): 485-497, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30345541

RESUMO

The benzoylurea chitin synthesis inhibitor teflubenzuron, widely used against sea lice in North Atlantic aquaculture, may pose an environmental threat to non-targeted crustaceans. In this experiment, laboratory acclimated pink shrimp (Pandalus montagui), a species found in fjords with Atlantic salmon farming, were exposed to dietary teflubenzuron for 46 days (control; low dose: 0.01 µg/g; high dose: 0.1 µg/g). The exposure doses represent 0.1% and 1% of a standard treatment dose for Atlantic salmon. Mortality and prevalence of deformities, pharmacokinetics, oxidative stress and transcriptomic and metabolomic profiling were used to assess the response to teflubenzuron exposure. Mortality in the high-dose group was 25% (five of 20 individuals). No control or low-dose group shrimps died. Phenotypic responses,i.e., leg deformities (0 control, 6 low, 8 high) and cloudy eyes (0 control, 3 low, 7 high), were observed in some surviving shrimps (control n = 15, low n = 17, high n = 15). Accumulated levels of teflubenzuron in shrimps from the high-dose group ranged from 4.7 to 369 ng/g wet weight. Transcriptomic profiling showed very few significantly altered genes in the exposed shrimps. Teflubenzuron-induced changes to the metabolome pointed to well-known effects of benzoylurea agents, with reduced levels of N-acetylglucosamine indicating an effect on chitin synthesis. The metabolomic profiling showed that teflubenzuron exposure was associated with reduced energy metabolism. Some metabolites pointed to increased necrosis and/or bacterial overgrowth in the teflubenzuron-exposed shrimps. In conclusion, this study shows that teflubenzuron causes phenotypic effects in P. montagui exposed to 0.1% of the treatment dose given to Atlantic salmon.


Assuntos
Benzamidas/toxicidade , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Aminoácidos/análise , Animais , Benzamidas/farmacocinética , Quitina/biossíntese , Metabolismo dos Lipídeos/efeitos dos fármacos , Pandalidae/metabolismo
7.
Ecotoxicol Environ Saf ; 160: 216-221, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29807294

RESUMO

Infestations with salmon lice, a parasitic copepod, is a major problem in the salmon farming industry. Teflubenzuron is an in-feed pharmaceutical applied to control lice outbreaks; the standard medication is 10 mg per kg fish per day for seven days. Surveys reveal that teflubenzuron accumulates and persists in the sediment around fish farms and causes deformities and mortality in juvenile European lobster (Homarus gammarus), a species commonly found in the vicinity of salmon farms in Norway. To date, there is no information on sub-lethal effects of teflubenzuron on, for example, behavior. We conducted an experiment to assess possible difference in the shelter seeking behavior of teflubenzuron-exposed (N = 19) vs. not exposed (N = 19) H. gammarus juveniles. The teflubenzuron-exposed juveniles had been given very low concentrations, 1.7 µg per pellet twice per week for 113 days prior to this experiment. The concentration of teflubenzuron was estimated to be less than 1 ng/g lobster when they were tested in the behavior experiment. Animals were placed in a lane with a shelter at one end. Once a lobster had found and entered the shelter, they were repeatedly displaced back to the opposite end of the lane, for a total of 3 repeated runs per animal. Three of the exposed juveniles failed to settle in the shelter, and the remaining teflubenzuron-exposed animals took significantly more time to explore the environment and to find and recognize shelter. Furthermore, exposed lobsters also exhibited slower walking speed compared to the controls. These results demonstrate that teflubenzuron significantly reduces exploratory behavior, learning and activity of juvenile H. gammarus. Thus, exposure to teflubenzuron could increase predation mortality of juvenile lobsters in the wild.


Assuntos
Antiparasitários/toxicidade , Benzamidas/toxicidade , Nephropidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Aquicultura , Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Nephropidae/fisiologia , Noruega
8.
Artigo em Inglês | MEDLINE | ID: mdl-28939506

RESUMO

Concerns have been raised over the environmental impacts of antiparasitic drugs used to delouse farmed salmon. Released into the marine environment, some of these drugs can have negative impact on non-targeted crustaceans in the vicinity of farming facilities. In this study, we examined the molecular effect of the insecticide teflubenzuron on a shrimp species inhabiting the littoral zone, the rockpool shrimp (Palaemon elegans). Rockpool shrimp was exposed for 98days to a dose representing 2% of a regular teflubenzuron medication applied to Atlantic salmon. Accumulation of teflubenzuron was studied in whole body samples, except abdominal segments 5 and 6, which were used for gene expression analysis. Insight into sublethal mode of action was sought by examining the transcriptional responses of 38 genes encoding proteins linked to molting and exoskeleton change, stress and detoxification. The accumulated levels of teflubenzuron in exposed animals varied between 1.7 and 33.0ng/g. Significant transcriptional effects of exposure were seen for markers linked to molting and exoskeleton change (chh, ctbs, gap65), stress and apoptosis (hsp40, hsp70, casp3), as well for detoxification (cyp6a18). In conclusion, this study shows that teflubenzuron can bioaccumulate in shrimps living in the littoral zone and at sublethal concentrations affects molecular mechanisms in non-hepatopancreatic tissue.


Assuntos
Antiparasitários/toxicidade , Benzamidas/toxicidade , Palaemonidae/efeitos dos fármacos , Exoesqueleto/citologia , Animais , Biomarcadores , Regulação da Expressão Gênica/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma
9.
PLoS One ; 11(8): e0159807, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560932

RESUMO

The high loss of newly released hatchery-reared European lobster (Homarus gammarus) juveniles for stock enhancement is believed to be the result of maladaptive anti-predator behaviour connected to deprived stimuli in the hatchery environment. Our objective was to learn if an enriched hatchery environment enhances shelter-seeking behaviour and survival. In the "naïve" treatment, the juveniles were raised in single compartments without substrate and shelter whereas juveniles in the "exposed" treatment experienced substrate, shelter and interactions with conspecifics. Three experiments with increasing complexity were conducted. Few differences in shelter-seeking behaviour were found between treatments when one naïve or one exposed juvenile were observed alone. When observing interactions between one naïve and one exposed juvenile competing for shelter, naïve juveniles more often initiated the first aggressive encounter. The third experiment was set up to simulate a release for stock enhancement. Naïve and exposed juveniles were introduced to a semi-natural environment including substrate, a limited number of shelters and interactions with conspecifics. Shelter occupancy was recorded three times during a period of 35 days. Exposed juveniles occupied more shelters, grew larger and had higher survival compared with naïve juveniles. Our results demonstrate that experience of environmental complexity and social interactions increase shelter-seeking ability and survival in hatchery reared lobster juveniles.


Assuntos
Aquicultura/métodos , Meio Ambiente , Comportamento de Retorno ao Território Vital/fisiologia , Nephropidae/fisiologia , Comportamento de Nidação/fisiologia , Fatores Etários , Agressão/fisiologia , Animais , Comportamento Competitivo/fisiologia , Noruega , Análise de Sobrevida , Fatores de Tempo
10.
Aquat Toxicol ; 167: 143-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26318677

RESUMO

Increasing use of pharmaceutical drugs to delouse farmed salmon raises environmental concerns. This study describes an experiment carried out to elucidate the molecular mechanisms of the antiparasitic drug teflubenzuron on a non-target species, the European lobster. Juvenile lobsters (10.3±0.9 mm carapace length) were fed two environmentally relevant doses of teflubenzuron, corresponding to 5 and 20% of a standard salmon medication (10 mg/kg day), termed low and high dose in this study. After 114 days of dietary exposure, whole-animal accumulation of teflubenzuron was determined. One claw from each animal was collected for transcriptional analysis. Overall, exposed animals showed low cumulative mortality. Six animals, two from the low dose treatment and four from the high dose, showed exoskeletal abnormalities (claw deformities or stiff walking legs). Residual levels of teflubenzuron in juvenile lobster were 2.7-fold higher in the high dose (282 ng/g) compared to the low dose treatment (103 ng/g). The transcriptional examination showed significant effects of teflubenzuron on 21 out of 39 studied genes. At the transcriptional level, environmentally relevant levels of the anti-salmon lice drug impacted genes linked to drug detoxification (cyp3a, cyp6a2, cyp302a, sult1b1, abcc4), cellular stress (hsp70, hsp90, chh), oxidative stress (cat, gpx3) and DNA damage (p53), as well as molting and exoskeleton regulation (chi3l1, ecr, jhl1, chs1, ctbs, gap65, jhel-ces1) in claw tissue (muscle and exoskeleton). In conclusion, teflubenzuron at sub-lethal levels can affect many molecular mechanisms in European lobster claws.


Assuntos
Benzamidas/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Nephropidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Exoesqueleto/efeitos dos fármacos , Animais
11.
Aquat Toxicol ; 149: 8-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24555954

RESUMO

This study describes experiments carried out to examine effects of the antiparasitic drug teflubenzuron, used in delousing farmed salmon, on a non-target species, the European lobster (Homarus gammarus). Juvenile lobsters were fed two doses of teflubenzuron, 10 and 20mg/kg successively for 7 days corresponding to a standard medication of the fish (10mg/kg day) and twice the standard dose (20mg/kg day). Monitoring lasted 3 months to include at least one moulting period for all individuals. Cumulative mortality was higher in all replicates given medicated feed compared with the control group. Mean cumulative mortality for each dosing was 41 ± 13% for 10mg/kg and 38 ± 8% for 20mg/kg, i.e. no difference. Drug residue was analysed in all juveniles that died, in addition to 12 juveniles at day 8 and the first 12 surviving lobsters. A decline in concentration of teflubenzuron from over 8,000 ng/g (day 5) to 14 ng/g (day 70) was observed in the juveniles that died during the experiment. Twelve individuals that died contained 82 ng/g or less whereas the mean concentration in the first 12 lobsters that survived moulting was 152 ng/g. Following a single oral administration, the half-life of teflubenzuron in lobster was estimated to 3.4 days and the initial concentration (C0) to 515 ng/g at time t0. At the end of the study a considerable number of juvenile lobsters were observed with deformities in various organs; carapace, walking legs, cheliped, tail fan, abdomen and antenna. The occurrence of observed deformities varied from 0 to 15% in treated replicates and will most likely affect ability to locate and consume food (antenna, claw and walking legs), respiration (carapace) and ability to move/swim (walking legs, tail fan and abdomen). In total, the mortality and senescent damages were close to 50% in all replicates. Juveniles that survived medication without deformities however, moulted and increased in size at each moult equally well as the unmedicated controls.


Assuntos
Benzamidas/toxicidade , Nephropidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antiparasitários/metabolismo , Antiparasitários/toxicidade , Benzamidas/metabolismo , Meia-Vida , Nephropidae/anatomia & histologia , Nephropidae/crescimento & desenvolvimento , Análise de Sobrevida , Poluentes Químicos da Água/metabolismo
12.
Mar Biol ; 159(9): 1969-1980, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24391277

RESUMO

Previous studies have found strong evidences for Atlantic cod (Gadus morhua) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...