Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 595: 216985, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38821255

RESUMO

Cancer-associated fibroblasts play a crucial role within the tumor microenvironment. However, a comprehensive characterization of CAF in colorectal cancer (CRC) is still missing. We combined scRNA-seq and spatial proteomics to decipher fibroblast heterogeneity in healthy human colon and CRC at high resolution. Analyzing nearly 23,000 fibroblasts, we identified 11 distinct clusters and verified them by spatial proteomics. Four clusters, consisting of myofibroblastic CAF (myCAF)-like, inflammatory CAF (iCAF)-like and proliferating fibroblasts as well as a novel cluster, which we named "T cell-inhibiting CAF" (TinCAF), were primarily found in CRC. This new cluster was characterized by the expression of immune-interacting receptors and ligands, including CD40 and NECTIN2. Co-culture of CAF and T cells resulted in a reduction of the effector T cell compartment, impaired proliferation, and increased exhaustion. By blocking its receptor interaction, we demonstrated that NECTIN2 was the key driver of T cell inhibition. Analysis of clinical datasets showed that NECTIN2 expression is a poor prognostic factor in CRC and other tumors. In conclusion, we identified a new class of immuno-suppressive CAF with features rendering them a potential target for future immunotherapies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Transdução de Sinais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/imunologia , Proliferação de Células , Técnicas de Cocultura , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Nectinas/metabolismo , Nectinas/genética , Proteômica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral
2.
Int J Cancer ; 152(9): 1916-1932, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637144

RESUMO

Basal-like breast cancer (BLBC) is the most aggressive and heterogeneous breast cancer (BC) subtype. Conventional chemotherapies represent next to surgery the most frequently employed treatment options. Unfortunately, resistant tumor phenotypes often develop, resulting in therapeutic failure. To identify the early events occurring upon the first drug application and initiating chemotherapy resistance in BLBC, we leveraged the WAP-T syngeneic mammary carcinoma mouse model and we developed a strategy combining magnetic-activated cell sorting (MACS)-based tumor cell enrichment with high-throughput transcriptome analyses. We discovered that chemotherapy induced a massive gene expression reprogramming toward stemness acquisition to tolerate and survive the cytotoxic treatment in vitro and in vivo. Retransplantation experiments revealed that one single cycle of cytotoxic drug combination therapy (Cyclophosphamide, Adriamycin and 5-Fluorouracil) suffices to induce resistant tumor cell phenotypes in vivo. We identified Axl and its ligand Pros1 as highly induced genes driving cancer stem cell (CSC) properties upon chemotherapy in vivo and in vitro. Furthermore, from our analysis of BLBC patient datasets, we found that AXL expression is also strongly correlated with CSC-gene signatures, a poor response to conventional therapies and worse survival outcomes in those patients. Finally, we demonstrate that AXL inhibition sensitized BLBC-cells to cytotoxic treatment in vitro. Together, our data support AXL as a promising therapeutic target to optimize the efficiency of conventional cytotoxic therapies in BLBC.


Assuntos
Antineoplásicos , Carcinoma , Camundongos , Animais , Antineoplásicos/farmacologia , Transdução de Sinais , Ciclofosfamida/farmacologia , Células-Tronco Neoplásicas/metabolismo , Carcinoma/metabolismo , Linhagem Celular Tumoral
3.
Nat Commun ; 12(1): 1453, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674603

RESUMO

A major roadblock prohibiting effective cellular immunotherapy of pancreatic ductal adenocarcinoma (PDAC) is the lack of suitable tumor-specific antigens. To address this challenge, here we combine flow cytometry screenings, bioinformatic expression analyses and a cyclic immunofluorescence platform. We identify CLA, CD66c, CD318 and TSPAN8 as target candidates among 371 antigens and generate 32 CARs specific for these molecules. CAR T cell activity is evaluated in vitro based on target cell lysis, T cell activation and cytokine release. Promising constructs are evaluated in vivo. CAR T cells specific for CD66c, CD318 and TSPAN8 demonstrate efficacies ranging from stabilized disease to complete tumor eradication with CD318 followed by TSPAN8 being the most promising candidates for clinical translation based on functionality and predicted safety profiles. This study reveals potential target candidates for CAR T cell based immunotherapy of PDAC together with a functional set of CAR constructs specific for these molecules.


Assuntos
Adenocarcinoma/metabolismo , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Imunoterapia/métodos , Neoplasias Pancreáticas/metabolismo , Tetraspaninas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animais , Antígenos de Neoplasias/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Fatores Imunológicos , Ativação Linfocitária , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Tetraspaninas/genética , Neoplasias Pancreáticas
4.
Front Oncol ; 9: 716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428583

RESUMO

Fibroblasts are thought to be key players in the tumor microenvironment. Means to identify and isolate fibroblasts as well as an understanding of their cancer-specific features are essential to dissect their role in tumor biology. To date, the identification of cancer-associated fibroblasts is widely based on generic markers for activated fibroblasts in combination with their origin in tumor tissue. This study was focused on a deep characterization of the cell surface marker profile of cancer-associated fibroblasts in widely used mouse tumor models and defining aberrant expression profiles by comparing them to their healthy counterparts. We established a generic workflow to isolate healthy and cancer-associated fibroblasts from solid tissues, thereby reducing bias, and background noise introduced by non-target cells. We identified CD87, CD44, CD49b, CD95, and Ly-6C as cancer-associated fibroblast cell surface markers, while CD39 was identified to mark normal fibroblasts from healthy tissues. In addition, we found a functional association of most cancer-related fibroblast markers to proliferation and a systemic upregulation of CD87, and CD49b in tumor-bearing mice, even in non-affected tissues. These novel markers will facilitate the characterization of fibroblasts and shed further light in their functions and implication in cancer progression.

5.
J Vis Exp ; (113)2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27501218

RESUMO

The use of in vitro cell line models for cancer research has been a useful tool. However, it has been shown that these models fail to reliably mimic patient tumors in different assays(1). Human tumor xenografts represent the gold standard with respect to tumor biology, drug discovery, and metastasis research (2-4). Tumor xenografts can be derived from different types of material like tumor cell lines, tumor tissue from primary patient tumors(4) or serially transplanted tumors. When propagated in vivo, xenografted tissue is infiltrated and vascularized by cells of mouse origin. Multiple factors such as the tumor entity, the origin of xenografted material, growth rate and region of transplantation influence the composition and the amount of mouse cells present in tumor xenografts. However, even when these factors are kept constant, the degree of mouse cell contamination is highly variable. Contaminating mouse cells significantly impair downstream analyses of human tumor xenografts. As mouse fibroblasts show high plating efficacies and proliferation rates, they tend to overgrow cultures of human tumor cells, especially slowly proliferating subpopulations. Mouse cell derived DNA, mRNA, and protein components can bias downstream gene expression analysis, next-generation sequencing, as well as proteome analysis (5). To overcome these limitations, we have developed a fast and easy method to isolate untouched human tumor cells from xenografted tumor tissue. This procedure is based on the comprehensive depletion of cells of mouse origin by combining automated tissue dissociation with the benchtop tissue dissociator and magnetic cell sorting. Here, we demonstrate that human target cells can be can be obtained with purities higher than 96% within less than 20 min independent of the tumor type.


Assuntos
Neoplasias , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...