Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vasc Cell ; 6(1): 3, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24581301

RESUMO

BACKGROUND: Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a tubulin-binding drug and approved in many countries worldwide for treatment of certain patients with advanced breast cancer. Here we investigated antiproliferative and antiangiogenic effects of eribulin on vascular cells, human umbilical vein endothelial cells (HUVECs) and human brain vascular pericytes (HBVPs), in vitro in comparison with another tubulin-binding drug, paclitaxel. METHODS: HUVECs and HBVPs were treated with either eribulin or paclitaxel and their antiproliferative effects were evaluated. Global gene expression profiling changes caused by drug treatments were studied using Affymetrix microarray platform and custom TaqMan Low Density Cards. To examine effects of the drugs on pericyte-driven in vitro angiogenesis, we compared lengths of capillary networks in co-cultures of HUVECs with HBVPs. RESULTS: Both eribulin and paclitaxel showed potent activities in in vitro proliferation of HUVECs and HBVPs, with the half-maximal inhibitory concentrations (IC50) in low- to sub-nmol/L concentrations. When gene expression changes were assessed in HUVECs, the majority of affected genes overlapped for both treatments (59%), while in HBVPs, altered gene signatures were drug-dependent and the overlap was limited to just 12%. In HBVPs, eribulin selectively affected 11 pathways (p < 0.01) such as Cell Cycle Control of Chromosomal Replication. In contrast, paclitaxel was tended to regulate 27 pathways such as PI3K/AKT. Only 5 pathways were commonly affected by both treatments. In in vitro pericyte-driven angiogenesis model, paclitaxel showed limited activity while eribulin shortened the formed capillary networks of HUVECs driven by HBVPs at low nmol/L concentrations starting at day 3 after treatments. CONCLUSIONS: Our findings suggest that pericytes, but not endothelial cells, responded differently, to two mechanistically-distinct tubulin-binding drugs, eribulin and paclitaxel. While eribulin and paclitaxel induced similar changes in gene expression in endothelial cells, in pericytes their altered gene expression was unique and drug-specific. In the functional endothelial-pericyte co-culture assay, eribulin, but not paclitaxel showed strong efficacy not only as a cytotoxic drug but also as a potent antivascular agent that affected pericyte-driven in vitro angiogenesis.

2.
Int J Mol Sci ; 14(7): 13687-703, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23880844

RESUMO

Folate receptor alpha (FOLR1/FRA) is reported to be overexpressed in epithelial ovarian cancers (EOC), especially the serous histotype. Further, while dysregulation of the folate-dependent 1-carbon cycle has been implicated in tumorogenesis, little is known relative to the potential mechanism of action of FOLR1 expression in these processes. We therefore investigated the expression of FOLR1, other folate receptors, and genes within the 1-carbon cycle in samples of EOC, normal ovary and fallopian tube on a custom TaqMan Low Density Array. Also included on this array were known markers of EOC such as MSLN, MUC16 and HE4. While few differences were observed in the expression profiles of genes in the 1-carbon cycle, genes previously considered to be overexpressed in EOC (e.g., FOLR1, MSLN, MUC16 and HE4) showed significantly increased expression when comparing EOC to normal ovary. However, when the comparator was changed to normal fallopian tube, these differences were abolished, supporting the hypothesis that EOC derives from fallopian fimbriae and, further, that markers previously considered to be upregulated or overexpressed in EOC are most likely not of ovarian origin, but fallopian in derivation. Our findings therefore support the hypothesis that the cell of origin of EOC is tubal epithelium.


Assuntos
Tubas Uterinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Adulto , Idoso , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Carbono/metabolismo , Carcinoma Epitelial do Ovário , Análise por Conglomerados , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/patologia , Feminino , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mesotelina , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Análise de Componente Principal , Proteínas/genética , Proteínas/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...