Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(11): 2891-2900, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611665

RESUMO

Conventional chemotherapeutic drugs are used for cancer management, but recently nanoparticles have also been shown to contribute towards controlling cancer cell proliferation. In the present study, we focussed on analyzing the combinatorial effect of Cerium oxide (CeO2) nanoparticles and Doxorubicin (Dox) on melanoma cancer cells in vitro and in vivo. We entrapped CeO2, Dox, and CeO2+Dox in a hybrid polymer matrix of alginate and chitosan (Alg-Cs) and used them in both in vitro and in vivo studies to compare their anticancer effect. Scratch assay using A549 lung cancer cells showed delayed wound healing when exposed to a low and high dose of CeO2 +Dox, compared to individual components. In order to determine a safe dose of the nanoformulations, zebrafish embryos were used. Further, in vivo, testing was done on Swiss albino female mice where the melanoma was induced by applying Benzopyrene followed by UV irradiation. The animals were treated with CeO2, Dox, and CeO2+ Dox that were entrapped in Alg-Cs for further 21 days. From both in vivo and in vitro results, we concluded that CeO2 and Dox in combination had superior therapeutic efficiency in cancer cells and animals than the nude drugs.

2.
Curr Pharmacol Rep ; 8(1): 48-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036292

RESUMO

PURPOSE OF REVEIW: The root cause of many diseases like CVD, cancer, and aging is free radicals which exert their effect by interfering with different metabolic pathways. The sources of free radicals can be exogenous, like UV rays from sunlight, and endogenous due to different metabolic by-products.In our body, there are defense mechanisms present, such as antioxidant enzymes and antioxidant molecules to combat these free radicals, but if there is an overload of these free radicals in our body, the defense system may not be sufficient to neutralize these free radicals. In such situations, we are exposed to a chronic low dose of oxidants creating oxidative stress, which is responsible for eliciting different diseases. RECENT FINDINGS: Pubmed and Google Scholar are the search engines used to sort out relevant papers on myricetin and its role in combating many diseases. Myricetin is present in many fruits and vegetables and is a known antioxidant. It can elevate the antioxidant enzyme levels; reduces the lipid peroxidation; and is known to protect against cancer. In the case of myocardial dysfunction, myricetin has been shown to suppress the inflammatory cytokines and reduced the mortality rate. Myricetin has also been found to reduce platelet aggregation and control the viral infections by interfering in the DNA replication pathways. SUMMARY: In this paper, we have briefly reviewed about the different type and site of free radicals and the role of myricetin in addressing the ROS and different diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...