Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 50(1): 78-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145420

RESUMO

OBJECTIVE: BCS class III drug (highly soluble, poorly permeable) possesses low oral bioavailability. The research work highlights the utility of self-double emulsifying drug delivery system (SDEDDS) which are stable isotropic mixture of w/o primary emulsion and hydrophilic surfactants for improving oral bioavailability of Ca-DTPA (Calcium diethylenetriamine pentaacetate). Upon oral administration, SDEDDS rapidly emulsifies into w/o/w double emulsions in the aqueous gastrointestinal environment, with hydrophilic drugs entrapped inside oil reservoirs. METHODS: SDEDDS formulation was successfully developed using excipients, that is, medium chain triglycerides, oleic acid, phospholipids, Span 80, Tween 80 using double emulsification technique. RESULTS: The optimized formulation F4 (Aq. phase: 11.6%w,w; MCT & oleic acid: 70.9%w/w; Span 80:17.5%w/w; Lecithin:16%w/w and Tween 80 (10%w/w)) appeared bright yellow liquid which upon dilution appeared milky white within 2 min, droplet size (501.7 nm), pdi value (0.044), zeta potential (-52 mV), entrapment efficiency (79.6 ± 1.63), viscosity (72.2 ± 1.8 mpA.s), significant high cumulative in vitro drug permeation (CDP) and 2.17-fold increase in apparent permeability coefficient. Pharmacokinetic studies in rats showed 1.17-fold increases in AUC of F4 and comparatively higher plasma levels (Cmax) compared with pure drug administered orally. The Absolute (OF4, OD) and Relative bioavailability was found to be 14.52%, 12.35%, and 117.47%, respectively. CONCLUSION: The present studies have clearly demonstrated that SDEDDS could readily form w/o/w double emulsions in vivo with enhanced in vitro and in vivo oral bioavailability. Therefore, considerable augmentation in the rate and extent of oral drug absorption ratified the better performance of the SDEDDS in enhancing the bioavailability of Ca-DTPA.


Assuntos
Ácido Oleico , Polissorbatos , Ratos , Animais , Disponibilidade Biológica , Solubilidade , Ácido Pentético , Emulsões , Sistemas de Liberação de Medicamentos/métodos , Triglicerídeos , Administração Oral , Tamanho da Partícula
2.
Curr Drug Deliv ; 18(8): 1162-1173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33504305

RESUMO

BACKGROUND: Prussian Blue (PB) is available as conventional release dosage form "Radiogardase" with effective daily dose of 3-10 g (very high). The target site is the duodenum, where it inhibits the enterohepatic circulation of Cs & Tl ions, enhancing their fecal excretion. OBJECTIVE: To enhance efficacy, target release, reduce the dose and side effects, oral pH-dependent matrix formulation of PB based on in-situ gelation of sodium alginate along with calcium salts was formulated and evaluated. METHODS: Different combinations of matrix granules were formulated and optimized. The optimized one was compressed using Polyvinylpyrrolidone K30 (Pvp K30) in different batches and optimized. Langmuir adsorption isotherm was used to assess in-vitro binding efficacy of formulation to thallium using atomic absorption spectroscopy. The proof of concept i.e., drug release in the duodenum was studied through pharmacoscintigraphy using radiolabeled formulation in rabbits. RESULTS: The optimized granules showed no drug release in an acidic medium for 2 h whereas complete empty of the basket in a basic medium within 30-60 minutes. The matrix tablet formulation with Pvp K30 (10% w/w) was optimized with desired hardness and optimum in-vitro release profile. The release data fitted to various linear kinetic models, Hixson-Crowell r2 (0.9906) best fit, confirmed the erosion-based release mechanism. The maximum binding capacity (MBC) was found significantly higher (89.60 mg Tl/g formulation) than that of PB API (65.90 mg Tl /g PB API). Pharmacoscintigraphic images confirmed intact formulation in the stomach up to 2h and burst release in intestine thereafter. CONCLUSION: The results exemplify oral pH-dependent PB matrix formulation which achieved desirable target release at the duodenum and in-vitro binding efficacy towards Tl ion was appreciable.


Assuntos
Ferrocianetos , Tálio , Adsorção , Animais , Concentração de Íons de Hidrogênio , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...