Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399029

RESUMO

Due to a continuously developing population, our consumption of one of the most widely used building materials, concrete, has increased. The production of concrete involves the use of cement whose production is one of the main sources of CO2 emissions; therefore, a challenge for today's society is to move towards a circular economy and develop building materials with a reduced environmental footprint. This study evaluates the possibility of using new sustainable supplementary cementitious materials (SCMs) from waste such as recycled concrete aggregates (RCAs) and mixed recycled aggregates (MRAs) from construction and demolition waste, as well as bottom ash from olive biomass (BBA-OL) and eucalyptus biomass ash (BBA-EU) derived from the production of electricity. A micronisation pre-treatment was carried out by mechanical methods to achieve a suitable fineness and increase the SCMs' specific surface area. Subsequently, an advanced characterisation of the new SCMs was carried out, and the acquired properties of the new cements manufactured with 25% cement substitution in the new SCMs were analysed in terms of pozzolanicity, mechanical behaviour, expansion and setting time tests. The results obtained demonstrate the feasibility of using these materials, which present a composition with potentially reactive hydraulic or pozzolanic elements, as well as the physical properties (fineness and grain size) that are ideal for SCMs. This implies the development of new eco-cements with suitable properties for possible use in the construction industry while reducing CO2 emissions and the industry's carbon footprint.

2.
Materials (Basel) ; 13(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041268

RESUMO

In the last 15 years, new types of display technologies have increasingly replaced cathode ray tube (CRT) screens, which has led to an increase in landfill of old discarded CRT televisions, which present a great environmental challenge throughout the world due to their high lead content. In addition, environmental awareness has led to greater use of recycled aggregates to reduce the exploitation of existing reserves. This document aims to study the feasibility of incorporating CRT glass waste with recycled aggregate (RA) in combinations for use in civil engineering, more specifically in road bases and sub-bases. For the mechanical and environmental assessment of all of the samples and materials, the following procedures have been performed: the compliance batch test of UNE-EN 12457-4:2004 for RA, CRT, and mixtures; the Percolation Test according CEN/TS 14405 for the mixtures, CRT, and RA; Modified Proctor and load capacity (the California Bearing Ratio, or CBR) in all mixtures without cement addition, and finally, compressive strength of the material treated with cement at different ages of curing. The analysis of the mechanical and environmental properties through different techniques of lixiviation was positive, showing the ability to use CRT for certain dosage percentages mixed with recycled aggregates.

3.
Waste Manag ; 34(9): 1693-704, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24889792

RESUMO

Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study.


Assuntos
Materiais de Construção/análise , Poluentes Químicos da Água/análise , Teste de Materiais , Metais Pesados/análise , Porosidade , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...