Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(24): 244702, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241332

RESUMO

High-harmonic generation (HHG) from the condensed matter phase holds promise to promote future cutting-edge research in the emerging field of attosecond nanoscopy. The key for the progress of the field relies on the capability of the existing schemes to enhance the harmonic yield and to push the photon energy cutoff to the extreme-ultraviolet (XUV, 10-100 eV) regime and beyond toward the spectral "water window" region (282-533 eV). Here, we demonstrate a coherent control scheme of HHG, which we show to give rise to quantum modulations in the XUV region. These modulations are shown to be caused by quantum-path interferences and are found to exhibit a strong sensitivity to the delocalized character of bulk states of the material. The control scheme is based on exploring surface states in transition-metal surfaces and, specifically, tuning the electronic structure of the metal surface itself together with the use of optimal chirped pulses. Moreover, we show that the use of such pulses having moderate intensities permits us to push the harmonic cutoff further to the spectral water window region and that the extension is found to be robust against the change in the intrinsic properties of the material. The scenario is numerically implemented using a minimal model by solving the time-dependent Schrödinger equation for the metal surface Cu(111) initially prepared in the surface state. Our findings elucidate the importance of metal surfaces for generating coherent isolated attosecond XUV and soft-x-ray pulses and for designing compact solid-state HHG devices.

2.
Micromachines (Basel) ; 12(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073368

RESUMO

High-order harmonic generation is a nonlinear process that converts the gained energy during light-matter interaction into high-frequency radiation, thus resulting in the generation of coherent attosecond pulses in the XUV and soft x-ray regions. Here, we propose a control scheme for enhancing the efficiency of HHG process induced by an intense near-infrared (NIR) multi-cycle laser pulse. The scheme is based on introducing an infrared (IR) single-cycle pulse and exploiting its characteristic feature that manifests by a non-zero displacement effect to generate high-photon energy. The proposed scenario is numerically implemented on the basis of the time-dependent Schrödinger equation. In particular, we show that the combined pulses allow one to produce high-energy plateaus and that the harmonic cutoff is extended by a factor of 3 compared to the case with the NIR pulse alone. The emerged high-energy plateaus is understood as a result of a vast momentum transfer from the single-cycle field to the ionized electrons while travelling in the NIR field, thus leading to high-momentum electron recollisions. We also identify the role of the IR single-cycle field for controlling the directionality of the emitted electrons via the IR-field induced electron displacement effect. We further show that the emerged plateaus can be controlled by varying the relative carrier-envelope phase between the two pulses as well as the wavelengths. Our findings pave the way for an efficient control of light-matter interaction with the use of assisting femtosecond single-cycle fields.

3.
Sci Rep ; 10(1): 21869, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318566

RESUMO

Coherent electron displacement is a conventional strategy for processing quantum information, as it enables to interconnect distinct sites in a network of atoms. The efficiency of the processing relies on the precise control of the mechanism, which has yet to be established. Here, we theoretically demonstrate a new route to drive the electron displacement on a timescale faster than that of the dynamical distortion of the electron wavepacket by utilizing attosecond single-cycle pulses. The characteristic feature of these pulses relies on a vast momentum transfer to an electron, leading to its displacement following a unidirectional path. The scenario is illustrated by revealing the spatiotemporal nature of the displaced wavepacket encoding a quantum superposition state. We map out the associated phase information and retrieve it over long distances from the origin. Moreover, we show that a sequence of such pulses applied to a chain of ions enables attosecond control of the directionality of the coherent motion of the electron wavepacket back and forth between the neighbouring sites. An extension to a two-electron spin state demonstrates the versatility of the use of these pulses. Our findings establish a promising route for advanced control of quantum states using attosecond single-cycle pulses, which pave the way towards ultrafast processing of quantum information as well as imaging.

4.
Sci Rep ; 10(1): 239, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937810

RESUMO

We study ultrafast ionization dynamics using orthogonally polarized two-color (OTC) laser pulses involving the resonant "first plus second" (ω + 2ω) scheme. The scheme is illustrated by numerical simulations of the time-dependent Schrödinger equation and recording the photoelectron momentum distribution. On the basis of the simulations of this resonant ionization, we identify signatures of the dynamic Autler-Townes effect and dynamic interference, in which their characterization is not possible in the spectral domain. Taking advantage of the OTC scheme we show that these dynamical effects, which occur at the same time scale, can be characterized in momentum space by controlling the spatial quantum interference. In particular, we show that with the use of this control scheme, one can tailor the properties of the control pulse to lead to enhancement of the ionization rate through the Autler-Townes effect without affecting the dynamic interference. This enhancement is shown to result from constructive interferences between partial photoelectron waves having opposite-parity, and found to manifest by symmetry-breaking of the momentum distribution. The scenario is investigated for a prototype of a hydrogen atom and is broadly applicable to other systems. Our findings may have applications for photoelectron interferometers to control the electron dynamics in time and space, and for accurate temporal characterization of attosecond pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA