Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(9): eaax1738, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31555735

RESUMO

The BAP1 tumor suppressor is mutated in many human cancers such as uveal melanoma, leading to poor patient outcome. It remains unclear how BAP1 functions in normal biology or how its loss promotes cancer progression. Here, we show that Bap1 is critical for commitment to ectoderm, mesoderm, and neural crest lineages during Xenopus laevis development. Bap1 loss causes transcriptional silencing and failure of H3K27ac to accumulate at promoters of key genes regulating pluripotency-to-commitment transition, similar to findings in uveal melanoma. The Bap1-deficient phenotype can be rescued with human BAP1, by pharmacologic inhibition of histone deacetylase (HDAC) activity or by specific knockdown of Hdac4. Similarly, BAP1-deficient uveal melanoma cells are preferentially vulnerable to HDAC4 depletion. These findings show that Bap1 regulates lineage commitment through H3K27ac-mediated transcriptional activation, at least in part, by modulation of Hdac4, and they provide insights into how BAP1 loss promotes cancer progression.


Assuntos
Diferenciação Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Neoplasias Uveais/metabolismo , Animais , Linhagem Celular Tumoral , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Xenopus laevis
2.
Methods Mol Biol ; 1920: 265-275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30737696

RESUMO

The Balbiani body (Bb) is a large membrane-less organelle, densely packed with mitochondria, endoplasmic reticulum, proteins, and RNA. The Bb is present in many vertebrate female gametes. In frogs, the Bb is established early during oogenesis and operates as a maternal inherited embryonic determinant that specifies germline identity through the formation of germplasm. We describe here two techniques to isolate the Bb/germplasm from Xenopus laevis primary oocytes.


Assuntos
Fracionamento Celular , Oócitos/metabolismo , Oogênese , Organelas/metabolismo , Xenopus laevis , Animais , Fracionamento Celular/métodos , Centrifugação com Gradiente de Concentração , Células Germinativas/metabolismo , Mitocôndrias/metabolismo , Oogênese/genética
3.
Mol Reprod Dev ; 85(12): 896-908, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230100

RESUMO

Dead-end1 (Dnd1) expression is restricted to the vertebrate germline where it is believed to activate translation of messenger RNAs (mRNAs) required to protect and promote that unique lineage. Nanos1 is one such germline mRNA whose translation is blocked by a secondary mRNA structure within the open reading frame (ORF). Dnd1 contains a canonical RNA recognition motif (RRM1) in its N-terminus but also contains a less conserved RRM2. Here we provide a mechanistic picture of the nanos1 mRNA-Dnd1 interaction in the Xenopus germline. We show that RRM1, but not RRM2, is required for binding nanos1. Similar to the zebrafish homolog, Xenopus Dnd1 possesses ATPase activity. Surprisingly, this activity appears to be within the RRM2, different from the C-terminal region where it is found in zebrafish. More importantly, we show that RRM2 is required for nanos1 translation and germline survival. Further, Dnd1 functions as a homodimer and binds nanos1 mRNA just downstream of the secondary structure required for nanos1 repression. We propose a model in which the RRM1 is required to bind nanos1 mRNA while the RRM2 is required to promote translation through the action of ATPase. Dnd1 appears to use RRMs to mimic the function of helicases.


Assuntos
Modelos Biológicos , Biossíntese de Proteínas , RNA Helicases , RNA Mensageiro , Proteínas de Ligação a RNA , Proteínas Repressoras , Proteínas de Xenopus , Animais , Domínios Proteicos , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Motivo de Reconhecimento de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
4.
Cold Spring Harb Protoc ; 2018(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321284

RESUMO

Microinjection of Xenopus oocytes has proven to be a valuable tool in a broad array of studies that require expression of DNA or RNA into functional protein. These studies are diverse and range from expression cloning to receptor-ligand interaction to nuclear programming. Oocytes offer a number of advantages for such studies, including their large size (∼1.2 mm in diameter), capacity for translation, and enormous nucleus (0.3-0.4 mm). They are cost effective, easily manipulated, and can be injected in large numbers in a short time period. Oocytes have a large maternal stockpile of all the essential components for transcription and translation. Consequently, the investigator needs only to introduce by microinjection the specific DNA or RNA of interest for synthesis. Oocytes translate virtually any exogenous RNA regardless of source, and the translated proteins are folded, modified, and transported to the correct cellular locations. Here we present procedures for the efficient microinjection of oocytes and their subsequent care.


Assuntos
Técnicas de Transferência de Genes , Microinjeções/métodos , Oócitos/fisiologia , Xenopus , Animais , Biossíntese de Proteínas
5.
Cold Spring Harb Protoc ; 2018(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321287

RESUMO

Xenopus oocytes and oocyte extracts are the starting material for a variety of experimental approaches. Oocytes are obtained by surgical removal of the ovary from anesthetized females. Although oocytes may be used while they remain within their ovarian follicle, it is more practical to work with defolliculated oocytes. Defolliculation can be performed either manually or enzymatically. Here we present a protocol for the isolation and separation of Xenopus oocytes at various developmental stages, and guidelines for maintaining oocytes in culture.


Assuntos
Separação Celular/métodos , Oócitos/fisiologia , Xenopus , Animais , Técnicas de Cultura de Células/métodos , Feminino , Ovário/citologia , Ovário/cirurgia
6.
Development ; 144(20): 3755-3765, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28870987

RESUMO

In the developing embryo, primordial germ cells (PGCs) represent the exclusive progenitors of the gametes, and their loss results in adult infertility. During early development, PGCs are exposed to numerous signals that specify somatic cell fates. To prevent somatic differentiation, PGCs must transiently silence their genome, an early developmental process that requires Nanos activity. However, it is unclear how Nanos translation is regulated in developing embryos. We report here that translation of nanos1 after fertilization requires Dead-end 1 (Dnd1), a vertebrate-specific germline RNA-binding protein. We provide evidence that Dnd1 protein, expression of which is low in oocytes, but increases dramatically after fertilization, directly interacts with, and relieves the inhibitory function of eukaryotic initiation factor 3f, a repressive component in the 43S preinitiation complex. This work uncovers a novel translational regulatory mechanism that is fundamentally important for germline development.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Animais , Diferenciação Celular , Feminino , Fertilização , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Oócitos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Transdução de Sinais
7.
Development ; 144(2): 292-304, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28096217

RESUMO

During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.


Assuntos
Movimento Celular/genética , Células Germinativas Embrionárias/fisiologia , Células Germinativas/metabolismo , RNA Mensageiro Estocado/genética , RNA/metabolismo , Xenopus laevis , Animais , Animais Geneticamente Modificados , Células Germinativas Embrionárias/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Oócitos/metabolismo , Oogênese/genética , RNA/análise , RNA/genética , RNA Mensageiro Estocado/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética
8.
Adv Exp Med Biol ; 953: 383-440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975276

RESUMO

Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes/genética , Células Germinativas/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Camundongos , Xenopus/crescimento & desenvolvimento , Xenopus laevis/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento
9.
Methods Mol Biol ; 1463: 115-124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27734352

RESUMO

Primordial germ cells (PGCs) are the precursors to the gametes and have the unique ability to retain full developmental potential. However, the mechanism(s) and gene-network(s) necessary for their proper specification and development are poorly understood. This is due, in part, to the challenges that must be overcome in order to identify and isolate PGCs during critical stages of development. Two distinct mechanisms have been characterized to specify the germ cell lineage in vertebrates: induction and inheritance. Regardless of mechanism, there are common developmental features shared among all vertebrates in forming the germ cell lineage. Xenopus offers several advantages for understanding the molecular mechanisms necessary to establish the germ line. Here, we provide detailed methods for isolating live PGCs at different time points: 1) just after they have segregated from the endodermal lineage, and 2) while they are migrating towards the presumptive gonad. Isolation of PGCs at these critical developmental stages will allow for the investigation of the mechanism(s) and gene-network(s) necessary for their proper specification and development.


Assuntos
Separação Celular/métodos , Células Germinativas/citologia , Xenopus laevis/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Endoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células-Tronco/citologia
10.
J Dev Biol ; 4(1)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998427

RESUMO

The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3'UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA.

11.
Curr Top Dev Biol ; 113: 271-303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26358876

RESUMO

In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.


Assuntos
Células Germinativas/fisiologia , Xenopus/embriologia , Zigoto/fisiologia , Animais , Linhagem da Célula , Citoesqueleto/metabolismo , Feminino , Estabilidade de RNA
12.
Dev Dyn ; 244(8): 988-1013, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25997789

RESUMO

BACKGROUND: Neural crest formation is one of the fundamental processes in the early stages of embryonic development in vertebrates. This transient and multipotent embryonic cell population is able to generate a variety of tissues and cell types in the adult body. hairy genes are transcription factors that contain a basic helix-loop-helix domain which binds to DNA. In Xenopus three hairy genes are known: hairy1, hairy2a, and hairy2b. The requirement of hairy genes was explored in early neural crest development although the late requirements of these genes during neural crest maintenance, migration and derivatives formation are still unknown. RESULTS: In this work, we extended the analysis of Xenopus hairy genes expression patterns and described new domains of expression. Functional analysis showed that hairy genes are required for the induction and migration of the neural crest and for the control of apoptosis. Moreover, we showed that hairy genes function as transcriptional repressors and that they are down-regulated by bone morphogenetic protein-Smad signaling and positively regulated by the Notch/Delta-Su(h) pathway. CONCLUSIONS: Our results indicate that hairy genes have a functional equivalence between them and that they are required for multiple processes during neural crest development.


Assuntos
Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Xenopus/genética , Proteínas de Xenopus/genética
13.
Dev Dyn ; 243(4): 527-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24357413

RESUMO

BACKGROUND: The neural crest is a transient multipotent migratory cell population unique to vertebrates. These cells undergo an epithelial-to-mesenchymal transition and migrate extensively through the embryo. They differentiate into numerous diverse derivatives including the peripheral nervous system, melanocytes,and craniofacial cartilages. The development of the neural crest is mediated by complex interactions of multiple signals and transcription factors. The kinesin Eg5 is a plus end-directed microtubule-based motor protein that is essential for bipolar spindle formation during mitosis and meiosis, axon growth, and mammal embryonic development. RESULTS: We analyzed in detail the expression pattern of eg5 and established that it is expressed at the prospective neural fold, in the premigratory and migratory neural crest. Functional analysis revealed that in Xenopus, early embryogenesis eg5 function is required during neural crest induction, specification, and maintenance. eg5 is also required during neural crest migration and for derivatives formation. Moreover, we demonstrated a hierarchical relationship with the Indian Hedgehog signaling pathway. CONCLUSIONS: Our results show that eg5 is essential for the specification and maintenance of neural crest progenitors during Xenopus early embryogenesis rather than cell proliferation and survival.


Assuntos
Proliferação de Células , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cinesinas/biossíntese , Crista Neural/embriologia , Proteínas de Xenopus/biossíntese , Animais , Sobrevivência Celular/fisiologia , Embrião não Mamífero/citologia , Mitose/fisiologia , Crista Neural/citologia , Xenopus laevis
14.
Dev Biol ; 364(2): 99-113, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22309705

RESUMO

Neural crest induction is the result of the combined action at the neural plate border of FGF, BMP, and Wnt signals from the neural plate, mesoderm and nonneural ectoderm. In this work we show that the expression of Indian hedgehog (Ihh, formerly named Banded hedgehog) and members of the Hedgehog pathway occurs at the prospective neural fold, in the premigratory and migratory neural crest. We performed a functional analysis that revealed the requirement of Ihh signaling in neural crest development. During the early steps of neural crest induction loss of function experiments with antisense morpholino or locally grafted cyclopamine-loaded beads suppressed the expression of early neural crest markers concomitant with the increase in neural and epidermal markers. We showed that changes in Ihh activity produced no alterations in either cell proliferation or apoptosis, suggesting that this signal involves cell fate decisions. A temporal analysis showed that Hedgehog is continuously required not only in the early and late specification but also during the migration of the neural crest. We also established that the mesodermal source of Ihh is important to maintain specification and also to support the migratory process. By a combination of embryological and molecular approaches our results demonstrated that Ihh signaling drives in the migration of neural crest cells by autocrine or paracrine mechanisms. Finally, the abrogation of Ihh signaling strongly affected only the formation of cartilages derived from the neural crest, while no effects were observed on melanocytes. Taken together, our results provide insights into the role of the Ihh cell signaling pathway during the early steps of neural crest development.


Assuntos
Movimento Celular , Proteínas Hedgehog/fisiologia , Crista Neural/crescimento & desenvolvimento , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biomarcadores/análise , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Melanócitos/fisiologia , Morfolinos/farmacologia , Crista Neural/efeitos dos fármacos , Transdução de Sinais , Alcaloides de Veratrum/farmacologia , Xenopus laevis/metabolismo
15.
Dev Dyn ; 241(2): 257-69, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170861

RESUMO

BACKGROUND: It has been established in several models that the p63 gene has an important role in the development of the epidermis and its derivatives. In Xenopus, only the ΔNp63 isoform of this gene has been cloned and its role during epidermal development remains unknown. RESULTS: In this work, we showed that ΔNp63 is expressed in the nonneural ectoderm since the gastrula stage and that it is regulated by the bone morphogenetic protein 4 (BMP4) signaling pathway. Our in vivo and in vitro experiments demonstrated that ΔNp63 is required in the earliest inductive steps of epidermal development. The overexpression of ΔNp63 caused an increase in epidermal markers with a suppression of neural induction while the blocking of ΔNp63 led to the opposite results. Finally, we found that ΔNp63 acts as an anti-apoptotic gene, regulating the transcription of some apoptotic and anti-apoptotic factors. CONCLUSION: The results suggest that ΔNp63 is an essential gene in early epidermal specification under the control of BMP4.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Epiderme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fosfoproteínas/genética , Transativadores/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Apoptose/genética , Epiderme/metabolismo , Transdução de Sinais , Xenopus laevis/metabolismo
16.
J Mol Biol ; 382(4): 1043-56, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18703071

RESUMO

Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.


Assuntos
Crista Neural/fisiologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Bufo arenarum/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Crista Neural/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...