Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107719, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674984

RESUMO

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

2.
Int Immunopharmacol ; 64: 151-161, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30176533

RESUMO

Acute kidney injury (AKI) and chronic kidney disease (CKD) are major concerns in worldwide public health, and their pathophysiology involves immune cells activation, being macrophages one of the main players of both processes. It is suggested that metabolic pathways could contribute to macrophage modulation and phosphatidylinositol­3 kinase (PI3K) pathway was shown to be activated in kidneys subjected to ischemia and reperfusion as well as unilateral ureteral obstruction (UUO). Although PI3K inhibition is mostly associated with anti-inflammatory response, its use in kidney injuries has been shown controversial results, which indicates the need for further studies. Our aim was to unveil the role of PI3Kγ in macrophage polarization and in kidney diseases development. We analyzed bone-marrow macrophages polarization from wild-type (WT) and PI3Kγ knockout (PI3K KO) animals. We observed increased expression of M1 (CD86, CCR7, iNOS, TNF, CXCL9, CXCL10, IL-12 and IL-23) and decreased of M2 (CD206, Arg-1, FIZZ1 and YM1) markers in the lack of PI3Kγ. And this modulation was accompanied by higher levels of inflammatory cytokines in PI3K KO M1 cells. PI3K KO mice had increased M1 in steady state kidneys, and no protection was observed in these mice after acute and chronic kidney insults. On the contrary, they presented higher levels of protein-to-creatinine ratio and Kim-1 expression and increased tubular injury. In conclusion, our findings demonstrated that the lack of PI3Kγ favors M1 macrophages polarization providing an inflammatory-prone environment, which does not prevent kidney diseases progression.


Assuntos
Injúria Renal Aguda/prevenção & controle , Polaridade Celular , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Macrófagos/fisiologia , Insuficiência Renal Crônica/prevenção & controle , Animais , Progressão da Doença , Inflamação/etiologia , Interleucina-12/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Obstrução Ureteral/complicações
3.
Cell Biol Int ; 42(6): 651-655, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29271525

RESUMO

In the past decade, several reports have appointed the importance of mitochondria in the immune response. Our understanding of mitochondria evolved from a simple supplier of energy into a platform necessary for immunorregulation. Proinflammatory responses are associated with enhanced glycolytic activity and breakdown of the TCA cycle. Mitochondrial reactive species of oxygen (mROS) are key regulators of classically activated macrophages, with substantial impact in the anti-microbicidal activity and pro-inflammatory cytokine secretion of macrophages. The inflammasome activation in macrophages is dependent on mROS production and mitochondrial regulation and mitochondrial dynamics and functionality direct impact inflammatory responses. Alternative activated macrophage metabolism relies on fatty acid oxidation, and the mechanism responsible for this phenotype is not fully elucidated. Thus, cellular metabolism and mitochondria function is a key immunoregulatory feature of macrophage biology. In this review, we will provide insights into recently reported evidences of mitochondria-related metabolic nodes, which are important for macrophage physiology.


Assuntos
Inflamação/patologia , Macrófagos/imunologia , Mitocôndrias/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Dinâmica Mitocondrial , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
4.
J Am Soc Nephrol ; 26(8): 1877-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25589612

RESUMO

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.


Assuntos
Injúria Renal Aguda/prevenção & controle , Ácidos Graxos Voláteis/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Animais , Bifidobacterium , Linhagem Celular , Células Dendríticas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inflamação/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Probióticos/uso terapêutico , Traumatismo por Reperfusão/metabolismo
5.
Lab Invest ; 94(4): 455-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24492283

RESUMO

Platelet-activating factor (PAF) is a lipid mediator with important pro-inflammatory effects, being synthesized by several cell types including kidney cells. Although there is evidence of its involvement in acute renal dysfunction, its role in progressive kidney injury is not completely known. In the present study, we investigated the role of PAF receptor (PAFR) in an experimental model of chronic renal disease. Wild-type (WT) and PAFR knockout (KO) mice underwent unilateral ureter obstruction (UUO), and at kill time, urine and kidney tissue was collected. PAFR KO animals compared with WT mice present: (a) less renal dysfunction, evaluated by urine protein/creatinine ratio; (b) less fibrosis evaluated by collagen deposition, type I collagen, Lysyl Oxidase-1 (LOX-1) and transforming growth factor ß (TGF-ß) gene expression, and higher expression of bone morphogenetic protein 7 (BMP-7) (3.3-fold lower TGF-ß/BMP-7 ratio); (c) downregulation of extracellular matrix (ECM) and adhesion molecule-related machinery genes; and (d) lower levels of pro-inflammatory cytokines. These indicate that PAFR engagement by PAF or PAF-like molecules generated during UUO potentiates renal dysfunction and fibrosis and might promote epithelial-to-mesenchymal transition (EMT). Also, early blockade of PAFR after UUO leads to a protective effect, with less fibrosis deposition. In conclusion, PAFR signaling contributes to a pro-inflammatory environment in the model of obstructive nephropathy, favoring the fibrotic process, which lately will generate renal dysfunction and progressive organ failure.


Assuntos
Rim/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Azepinas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Nefrite/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Insuficiência Renal Crônica/patologia , Triazóis , Obstrução Ureteral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...