Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 47(11): 3250-3260, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35750876

RESUMO

Epilepsy is a common neurological disorder which affects 50 million people worldwide. Patients with epilepsy may present cognitive deficits and psychological impairment. Currently, 30% of patients fail to respond to any available antiseizure drug, and a significant number of patients do not well tolerate the offered treatments. Then, it is necessary to find out alternatives for controlling epileptic seizures. Studies have shown that despite its neuroprotective effects, resveratrol shows poor anticonvulsant properties. Resveratrol analog, piceatannol, possesses higher biological activity than resveratrol and could be an alternative to control seizure. Thus, the present study investigated the effects of resveratrol and piceatannol in pentylenetetrazole-induced seizures in adult zebrafish (Danio rerio). Only the experimental positive control (diazepam) showed anticonvulsant effect in this study. In addition, no behavioral changes were observed 24 h after seizure occurrence. Finally, the expression of genes related to neuronal activity (c-fos), neurogenesis (p70S6Ka and p70S6Kb), inflammatory response (interleukin 1ß), and cell apoptosis (caspase-3) did not change by pentylenetetrazole-induced seizures. Therefore, we failed to observe any anticonvulsant and neuroprotective potential of resveratrol and piceatannol in adult zebrafish. However, resveratrol and piceatannol benefits in epilepsy are not discharged, and more studies are necessary.


Assuntos
Epilepsia , Fármacos Neuroprotetores , Animais , Anticonvulsivantes/efeitos adversos , Caspase 3 , Diazepam/uso terapêutico , Epilepsia/tratamento farmacológico , Interleucina-1beta , Fármacos Neuroprotetores/efeitos adversos , Pentilenotetrazol/toxicidade , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estilbenos , Peixe-Zebra
2.
Inflammopharmacology ; 30(1): 327-341, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35006455

RESUMO

Curcumin presents a promising anti-inflammatory potential, but its low water-solubility and bioavailability hinder its application. In this sense, cocrystallization represents a tool for improving physicochemical properties, solubility, permeability, and bioavailability of new drug candidates. Thus, the aim of this work was to produce curcumin cocrystals (with n-acetylcysteine as coformer, which possesses anti-inflammatory and antioxidant activities), by the anti-solvent gas technique using supercritical carbon dioxide, and to test its antinociceptive and anti-inflammatory potential. The cocrystal was characterized by differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopy. The cocrystal solubility and antichemotaxic activity were also assessed in vitro. Antinociceptive and anti-inflammatory activities were carried out in vivo using the acetic acid-induced abdominal writhing and carrageenan-induced paw oedema assays in mice. The results demonstrated the formation of a new crystalline structure, thereby confirming the successful formation of the cocrystal. The higher solubility of the cocrystal compared to pure curcumin was verified in acidic and neutral pH, and the cocrystal inhibited the chemotaxis of neutrophils in vitro. In vivo assays showed that cocrystal presents increased antinociceptive and anti-inflammatory potency when compared to pure curcumin, which could be related to an improvement in its bioavailability.


Assuntos
Curcumina , Acetilcisteína/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Cristalização/métodos , Curcumina/farmacologia , Camundongos , Solubilidade , Solventes/química
3.
Neurochem Res ; 46(11): 3025-3034, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34309774

RESUMO

Epilepsy affects around 50 million people worldwide, and an important number of patients (30%) fail to respond to any available antiepileptic drug. Previous studies have shown that luteolin presents a promising potential as an anticonvulsant. On the other hand, different studies showed that luteolin does not promote anticonvulsant effects. Therefore, there is a lack of consensus about the use of luteolin for seizure control. Luteolin low bioavailability could be a limiting factor to obtain better results. Attractively, micronization technology has been applied to improve flavonoids bioavailability. Thus, the present study aimed to investigate the effects of luteolin on its raw form and micronized luteolin in a PTZ-induced seizure model in adult zebrafish (Danio rerio). Our results demonstrate that luteolin and micronized luteolin did not block PTZ-induced seizures in adult zebrafish. Also, luteolin and micronized luteolin did not provoke behavioral changes. Finally, our results show that 24 h after seizure occurrence, no changes were detected for p70S6Kb, interleukin 1ß, and caspase-3 transcript levels. Altogether, we failed to observe an anticonvulsant potential of luteolin in adult zebrafish, even in its micronized form. However, we recommend new studies to investigate luteolin benefits in epilepsy.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Luteolina/administração & dosagem , Luteolina/síntese química , Convulsões/tratamento farmacológico , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Tamanho da Partícula , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Peixe-Zebra
4.
Neurochem Res ; 46(2): 241-251, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33108629

RESUMO

Epilepsy affects 50 million people around the world, and the patients experience cognitive, psychological and social consequences. Despite the considerable quantity of antiepileptic drugs available, 30% of patients still suffer in seizure. Therefore, the advance in therapeutic alternatives is mandatory. Resveratrol has been attracting the attention of many researchers because of its pharmacological potential. However, despite its neuroprotective and anti-epileptic effects, clinical resveratrol use is impaired by its low bioavailability. Here, we applied the supercritical fluid micronization technology (SEDS) to overcome this deficit, and investigated the anticonvulsant potential of micronized resveratrol in a PTZ-induced seizure model in adult zebrafish (Danio rerio). SEDS permits obtaining significantly reduced particle size with a fine size distribution in comparison with the starting material. It can improve the pharmacotherapeutic efficacy. Our data showed that micronized resveratrol decreased the occurrence of the tonic-clonic seizure stage and slowed the development of the seizures in a similar manner of diazepam. Non-processed resveratrol was not able to protect the animals. Furthermore, diazepam decreased the locomotion and exploratory behavior. Differently from diazepam, the micronized resveratrol did not induce behavioral adverse events. In addition, our data showed that the PTZ-induced seizures increased the c-fos transcript levels following the neural excitability. However, the increase in c-fos levels was prevented by micronized resveratrol. In conclusion, our results demonstrate that the micronized resveratrol shows anticonvulsant effect, like the classical antiepileptic drug diazepam in a PTZ-induced seizure model. Excitingly, different from diazepam, micronized resveratrol did not provoke behavioral adverse events.


Assuntos
Anticonvulsivantes/uso terapêutico , Resveratrol/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/química , Diazepam/uso terapêutico , Feminino , Locomoção/efeitos dos fármacos , Masculino , Tamanho da Partícula , Pentilenotetrazol , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resveratrol/química , Convulsões/induzido quimicamente , Peixe-Zebra
5.
Epilepsy Res ; 159: 106243, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786493

RESUMO

Resveratrol is a natural non-flavonoid polyphenolic that has been emerging in epilepsy treatment. Despite its pharmacological properties, the poor bioavailability of resveratrol has been an important barrier that hinders its application as an anticonvulsant. The aim of this work was to improve resveratrol's anticonvulsant effects by micronizing this compound through supercritical fluid micronization technology, which promotes an increase of the particles' surface area and allows significantly reduced particle size to be obtained. We obtained commercial and micronized resveratrol and investigated the anticonvulsant effects of resveratrol as commercially found and micronized resveratrol in a pentylenetetrazole-induced seizure model in zebrafish (Danio rerio) larvae. Diazepam was used as the positive control. Also, animals had their locomotor and exploratory activity analyzed 24 h after the seizure occurrence. The occurrence of the tonic-clonic seizure stage was only prevented by diazepam and micronized resveratrol, unlike the non-processed compound. The seizure development was significantly slowed by diazepam and micronized resveratrol, while non-micronized resveratrol was not able to increase the latency of seizure stages. In addition, diazepam and micronized resveratrol prevented the deleterious effects of pentylenetetrazole-induced seizures on animals' locomotor and exploratory behaviour. Obtained data demonstrates that the micronization process potentiates the anticonvulsant effect of resveratrol. Micronized resveratrol achieved a similar effect to the classical drug diazepam, with the benefit that it may be a safe drug candidate to be used during the neurodevelopmental stage.


Assuntos
Anticonvulsivantes/uso terapêutico , Resveratrol/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Pentilenotetrazol , Convulsões/induzido quimicamente , Resultado do Tratamento , Peixe-Zebra
6.
Sci Rep ; 8(1): 2645, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422541

RESUMO

Epilepsy is one of the most common neurological diseases, and current antiepileptic drugs fail to suppress seizure occurrence in around one third of epileptic patients. Curcumin is a phytochemical with promising effects on epilepsy treatment. However, its application has been hindered by its low bioavailability. In order to improve curcumin's anti-seizure properties, increasing its bioavailability, here we proposed to micronize the compound through supercritical carbon dioxide processing, a suitable green chemistry technique to prepare and modify material properties. Here we investigated the anti-seizure potential of the classical antiepileptic drug valproate, curcumin in its natural state, and micronized curcumin in a PTZ-induced seizure model in zebrafish (Danio rerio). Concerning seizure development, valproate, curcumin and micronized curcumin showed protective effects, slowing seizure development both in larvae and adult animals. Nevertheless, considering the occurrence of the tonic-clonic seizure stage, only valproate and micronized curcumin reduced it, both in larvae and adult zebrafish, unlike non-processed curcumin. Our obtained results are very promising, since micronized curcumin showed effects that are similar to a classic antiepileptic drug, reducing seizure occurrence and slowing seizure progression.


Assuntos
Curcumina/farmacocinética , Composição de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Disponibilidade Biológica , Curcumina/farmacologia , Curcumina/uso terapêutico , Modelos Animais de Doenças , Epilepsia/metabolismo , Convulsões/induzido quimicamente , Ácido Valproico/farmacocinética , Ácido Valproico/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...