Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(586)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762439

RESUMO

Staphylococcus aureus (SA) bloodstream infections cause high morbidity and mortality (20 to 30%) despite modern supportive care. In a human bacteremia cohort, we found that development of thrombocytopenia was correlated to increased mortality and increased α-toxin expression by the pathogen. Platelet-derived antibacterial peptides are important in bloodstream defense against SA, but α-toxin decreased platelet viability, induced platelet sialidase to cause desialylation of platelet glycoproteins, and accelerated platelet clearance by the hepatic Ashwell-Morell receptor (AMR). Ticagrelor (Brilinta), a commonly prescribed P2Y12 receptor inhibitor used after myocardial infarction, blocked α-toxin-mediated platelet injury and resulting thrombocytopenia, thereby providing protection from lethal SA infection in a murine intravenous challenge model. Genetic deletion or pharmacological inhibition of AMR stabilized platelet counts and enhanced resistance to SA infection, and the anti-influenza sialidase inhibitor oseltamivir (Tamiflu) provided similar therapeutic benefit. Thus, a "toxin-platelet-AMR" regulatory pathway plays a critical role in the pathogenesis of SA bloodstream infection, and its elucidation provides proof of concept for repurposing two commonly prescribed drugs as adjunctive therapies to improve patient outcomes.


Assuntos
Bacteriemia , Preparações Farmacêuticas , Infecções Estafilocócicas , Animais , Bacteriemia/tratamento farmacológico , Plaquetas , Humanos , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
2.
PLoS Pathog ; 13(9): e1006603, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945820

RESUMO

Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Edema/metabolismo , Endossomos/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Adenilil Ciclases/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular , Endossomos/metabolismo , Junções Intercelulares/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo
3.
ChemMedChem ; 9(9): 2164-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25055981

RESUMO

Semisynthetic derivatives of the clinically useful aminoglycosides tobramycin and amikacin were prepared by selectively modifying their 6'' positions with a variety of hydrogen bond donors and acceptors. Their binding to the rRNA A-site was probed using an in vitro FRET-based assay, and their antibacterial activities against several resistant strains (e.g., Pseudomonas aeruginosa, Klebsiella pneumonia, MRSA) were quantified by determining minimum inhibitory concentrations (MICs). The most potent derivatives were evaluated for their eukaryotic cytotoxicity. Most analogues displayed higher affinity for the bacterial A-site than the parent compounds. Although most tobramycin analogues exhibited no improvement in antibacterial activity, several amikacin analogues showed potent and broad-spectrum antibacterial activity against resistant bacteria. Derivatives tested for eukaryotic cytotoxicity exhibited minimal toxicity, similar to the parent compounds.


Assuntos
Amicacina/análogos & derivados , Amicacina/síntese química , Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , RNA Ribossômico 16S/efeitos dos fármacos , Tobramicina/análogos & derivados , Tobramicina/síntese química , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Tobramicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...